當前位置: 首頁>>代碼示例>>Python>>正文


Python rnn.static_rnn方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.rnn.static_rnn方法的典型用法代碼示例。如果您正苦於以下問題:Python rnn.static_rnn方法的具體用法?Python rnn.static_rnn怎麽用?Python rnn.static_rnn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.rnn的用法示例。


在下文中一共展示了rnn.static_rnn方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import static_rnn [as 別名]
def __call__(self,
               inputs,
               initial_state=None,
               dtype=None,
               sequence_length=None,
               scope=None):
    is_list = isinstance(inputs, list)
    if self._use_dynamic_rnn:
      if is_list:
        inputs = array_ops.stack(inputs)
      outputs, state = rnn.dynamic_rnn(
          self._cell,
          inputs,
          sequence_length=sequence_length,
          initial_state=initial_state,
          dtype=dtype,
          time_major=True,
          scope=scope)
      if is_list:
        # Convert outputs back to list
        outputs = array_ops.unstack(outputs)
    else:  # non-dynamic rnn
      if not is_list:
        inputs = array_ops.unstack(inputs)
      outputs, state = rnn.static_rnn(
          self._cell,
          inputs,
          initial_state=initial_state,
          dtype=dtype,
          sequence_length=sequence_length,
          scope=scope)
      if not is_list:
        # Convert outputs back to tensor
        outputs = array_ops.stack(outputs)

    return outputs, state 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:fused_rnn_cell.py

示例2: basic_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import static_rnn [as 別名]
def basic_rnn_seq2seq(encoder_inputs,
                      decoder_inputs,
                      cell,
                      dtype=dtypes.float32,
                      scope=None):
  """Basic RNN sequence-to-sequence model.

  This model first runs an RNN to encode encoder_inputs into a state vector,
  then runs decoder, initialized with the last encoder state, on decoder_inputs.
  Encoder and decoder use the same RNN cell type, but don't share parameters.

  Args:
    encoder_inputs: A list of 2D Tensors [batch_size x input_size].
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    cell: tf.nn.rnn_cell.RNNCell defining the cell function and size.
    dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing the generated outputs.
      state: The state of each decoder cell in the final time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
    enc_cell = copy.deepcopy(cell)
    _, enc_state = rnn.static_rnn(enc_cell, encoder_inputs, dtype=dtype)
    return rnn_decoder(decoder_inputs, enc_state, cell) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:31,代碼來源:seq2seq.py

示例3: tied_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import static_rnn [as 別名]
def tied_rnn_seq2seq(encoder_inputs,
                     decoder_inputs,
                     cell,
                     loop_function=None,
                     dtype=dtypes.float32,
                     scope=None):
  """RNN sequence-to-sequence model with tied encoder and decoder parameters.

  This model first runs an RNN to encode encoder_inputs into a state vector, and
  then runs decoder, initialized with the last encoder state, on decoder_inputs.
  Encoder and decoder use the same RNN cell and share parameters.

  Args:
    encoder_inputs: A list of 2D Tensors [batch_size x input_size].
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    cell: tf.nn.rnn_cell.RNNCell defining the cell function and size.
    loop_function: If not None, this function will be applied to i-th output
      in order to generate i+1-th input, and decoder_inputs will be ignored,
      except for the first element ("GO" symbol), see rnn_decoder for details.
    dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing the generated outputs.
      state: The state of each decoder cell in each time-step. This is a list
        with length len(decoder_inputs) -- one item for each time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
    scope = scope or "tied_rnn_seq2seq"
    _, enc_state = rnn.static_rnn(
        cell, encoder_inputs, dtype=dtype, scope=scope)
    variable_scope.get_variable_scope().reuse_variables()
    return rnn_decoder(
        decoder_inputs,
        enc_state,
        cell,
        loop_function=loop_function,
        scope=scope) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:43,代碼來源:seq2seq.py

示例4: __call__

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import static_rnn [as 別名]
def __call__(self,inputs,seq_len = None):
        if self.call_cnt ==0:
            self.cell = LSTMCell(self.output_dim,initializer = self.initializer(dtype=inputs.dtype))
        
        with tf.variable_scope(self.scope) as scope:
            #self.check_reuse(scope)
            #if self.call_cnt ==0:
                #self.cell = LSTMCell(self.output_dim,initializer = self.initializer)
                #cell = BasicLSTMCell(self.output_dim)
            print scope.reuse
            rnn.dynamic_rnn(self.cell,inputs,seq_len,dtype = inputs.dtype)
            print scope.reuse
            return rnn.dynamic_rnn(self.cell,inputs,seq_len,dtype = inputs.dtype)
            
            #return rnn.static_rnn(self.cell,inputs.as_list(),dtype = inputs.dtype) 
開發者ID:sanmusunrise,項目名稱:NPNs,代碼行數:17,代碼來源:test.py

示例5: __call__

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import static_rnn [as 別名]
def __call__(self,inputs,seq_len = None):
        if self.call_cnt ==0:
            self.cell = LSTMCell(self.output_dim,initializer = self.initializer(dtype=inputs.dtype))
        
        with tf.variable_scope(self.scope) as scope:
            self.check_reuse(scope)
            #if self.call_cnt ==0:
                #self.cell = LSTMCell(self.output_dim,initializer = self.initializer)
                #cell = BasicLSTMCell(self.output_dim)
            return rnn.dynamic_rnn(self.cell,inputs,seq_len,dtype = inputs.dtype)
            
            #return rnn.static_rnn(self.cell,inputs.as_list(),dtype = inputs.dtype) 
開發者ID:sanmusunrise,項目名稱:NPNs,代碼行數:14,代碼來源:LSTMLayer.py

示例6: basic_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import static_rnn [as 別名]
def basic_rnn_seq2seq(encoder_inputs,
                      decoder_inputs,
                      cell,
                      dtype=dtypes.float32,
                      scope=None):
  """Basic RNN sequence-to-sequence model.

  This model first runs an RNN to encode encoder_inputs into a state vector,
  then runs decoder, initialized with the last encoder state, on decoder_inputs.
  Encoder and decoder use the same RNN cell type, but don't share parameters.

  Args:
    encoder_inputs: A list of 2D Tensors [batch_size x input_size].
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    cell: tf.nn.rnn_cell.RNNCell defining the cell function and size.
    dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing the generated outputs.
      state: The state of each decoder cell in the final time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
    #enc_cell = copy.deepcopy(cell)
    enc_cell = copy.copy(cell)
    _, enc_state = rnn.static_rnn(enc_cell, encoder_inputs, dtype=dtype)
    return rnn_decoder(decoder_inputs, enc_state, cell) 
開發者ID:Shen-Lab,項目名稱:DeepAffinity,代碼行數:32,代碼來源:seq2seq.py


注:本文中的tensorflow.python.ops.rnn.static_rnn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。