當前位置: 首頁>>代碼示例>>Python>>正文


Python rnn.rnn方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.rnn.rnn方法的典型用法代碼示例。如果您正苦於以下問題:Python rnn.rnn方法的具體用法?Python rnn.rnn怎麽用?Python rnn.rnn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.rnn的用法示例。


在下文中一共展示了rnn.rnn方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: baseline_forward

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def baseline_forward(self, X, size, n_class):
        shape = X.get_shape()
        # batch_size x sentence_length x word_length -> batch_size x sentence_length x word_length
        _X = tf.transpose(X, [1, 0, 2])
        _X = tf.reshape(_X, [-1, int(shape[2])])  # (batch_size x sentence_length) x word_length
        seq = tf.split(0, int(shape[1]), _X)  # sentence_length x (batch_size x word_length)

        with tf.name_scope("LSTM"):
            lstm_cell = rnn_cell.BasicLSTMCell(size, forget_bias=1.0)
            outputs, states = rnn.rnn(lstm_cell, seq, dtype=tf.float32)

        with tf.name_scope("LSTM-Classifier"):
            W = tf.Variable(tf.random_normal([size, n_class]), name="W")
            b = tf.Variable(tf.random_normal([n_class]), name="b")
            output = tf.matmul(outputs[-1], W) + b

        return output 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:19,代碼來源:test_tf_qrnn_work.py

示例2: basic_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def basic_rnn_seq2seq(
        encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
    """Basic RNN sequence-to-sequence model.

    This model first runs an RNN to encode encoder_inputs into a state vector,
    then runs decoder, initialized with the last encoder state, on decoder_inputs.
    Encoder and decoder use the same RNN cell type, but don't share parameters.

    Args:
      encoder_inputs: A list of 2D Tensors [batch_size x input_size].
      decoder_inputs: A list of 2D Tensors [batch_size x input_size].
      cell: rnn_cell.RNNCell defining the cell function and size.
      dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
      scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".

    Returns:
      A tuple of the form (outputs, state), where:
        outputs: A list of the same length as decoder_inputs of 2D Tensors with
          shape [batch_size x output_size] containing the generated outputs.
        state: The state of each decoder cell in the final time-step.
          It is a 2D Tensor of shape [batch_size x cell.state_size].
    """
    with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
        _, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
        return rnn_decoder(decoder_inputs, enc_state, cell) 
開發者ID:atpaino,項目名稱:deep-text-corrector,代碼行數:27,代碼來源:seq2seq.py

示例3: basic_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def basic_rnn_seq2seq(
    encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
  """Basic RNN sequence-to-sequence model.

  This model first runs an RNN to encode encoder_inputs into a state vector,
  then runs decoder, initialized with the last encoder state, on decoder_inputs.
  Encoder and decoder use the same RNN cell type, but don't share parameters.

  Args:
    encoder_inputs: A list of 2D Tensors [batch_size x input_size].
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    cell: rnn_cell.RNNCell defining the cell function and size.
    dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing the generated outputs.
      state: The state of each decoder cell in the final time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
    _, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
    return rnn_decoder(decoder_inputs, enc_state, cell) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:seq2seq.py

示例4: basic_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def basic_rnn_seq2seq(
        encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
    """Basic RNN sequence-to-sequence model.

    This model first runs an RNN to encode encoder_inputs into a state vector,
    then runs decoder, initialized with the last encoder state, on decoder_inputs.
    Encoder and decoder use the same RNN cell type, but don't share parameters.

    Args:
        encoder_inputs: A list of 2D Tensors [batch_size x input_size].
        decoder_inputs: A list of 2D Tensors [batch_size x input_size].
        cell: rnn_cell.RNNCell defining the cell function and size.
        dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
        scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".

    Returns:
        A tuple of the form (outputs, state), where:
            outputs: A list of the same length as decoder_inputs of 2D Tensors with
                shape [batch_size x output_size] containing the generated outputs.
            state: The state of each decoder cell in the final time-step.
                It is a 2D Tensor of shape [batch_size x cell.state_size].
    """
    with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
        _, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
        return rnn_decoder(decoder_inputs, enc_state, cell) 
開發者ID:thu-coai,項目名稱:ecm,代碼行數:27,代碼來源:seq2seq.py

示例5: tied_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
                     loop_function=None, dtype=dtypes.float32, scope=None):
    """RNN sequence-to-sequence model with tied encoder and decoder parameters.

    This model first runs an RNN to encode encoder_inputs into a state vector, and
    then runs decoder, initialized with the last encoder state, on decoder_inputs.
    Encoder and decoder use the same RNN cell and share parameters.

    Args:
      encoder_inputs: A list of 2D Tensors [batch_size x input_size].
      decoder_inputs: A list of 2D Tensors [batch_size x input_size].
      cell: rnn_cell.RNNCell defining the cell function and size.
      loop_function: If not None, this function will be applied to i-th output
        in order to generate i+1-th input, and decoder_inputs will be ignored,
        except for the first element ("GO" symbol), see rnn_decoder for details.
      dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
      scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".

    Returns:
      A tuple of the form (outputs, state), where:
        outputs: A list of the same length as decoder_inputs of 2D Tensors with
          shape [batch_size x output_size] containing the generated outputs.
        state: The state of each decoder cell in each time-step. This is a list
          with length len(decoder_inputs) -- one item for each time-step.
          It is a 2D Tensor of shape [batch_size x cell.state_size].
    """
    with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
        scope = scope or "tied_rnn_seq2seq"
        _, enc_state = rnn.rnn(
            cell, encoder_inputs, dtype=dtype, scope=scope)
        variable_scope.get_variable_scope().reuse_variables()
        return rnn_decoder(decoder_inputs, enc_state, cell,
                           loop_function=loop_function, scope=scope) 
開發者ID:atpaino,項目名稱:deep-text-corrector,代碼行數:35,代碼來源:seq2seq.py

示例6: tied_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
                     loop_function=None, dtype=dtypes.float32, scope=None):
  """RNN sequence-to-sequence model with tied encoder and decoder parameters.

  This model first runs an RNN to encode encoder_inputs into a state vector, and
  then runs decoder, initialized with the last encoder state, on decoder_inputs.
  Encoder and decoder use the same RNN cell and share parameters.

  Args:
    encoder_inputs: A list of 2D Tensors [batch_size x input_size].
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    cell: rnn_cell.RNNCell defining the cell function and size.
    loop_function: If not None, this function will be applied to i-th output
      in order to generate i+1-th input, and decoder_inputs will be ignored,
      except for the first element ("GO" symbol), see rnn_decoder for details.
    dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing the generated outputs.
      state: The state of each decoder cell in each time-step. This is a list
        with length len(decoder_inputs) -- one item for each time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
    scope = scope or "tied_rnn_seq2seq"
    _, enc_state = rnn.rnn(
        cell, encoder_inputs, dtype=dtype, scope=scope)
    variable_scope.get_variable_scope().reuse_variables()
    return rnn_decoder(decoder_inputs, enc_state, cell,
                       loop_function=loop_function, scope=scope) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:35,代碼來源:seq2seq.py

示例7: __call__

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def __call__(self,
               inputs,
               initial_state=None,
               dtype=None,
               sequence_length=None,
               scope=None):
    is_list = isinstance(inputs, list)
    if self._use_dynamic_rnn:
      if is_list:
        inputs = array_ops.pack(inputs)
      outputs, state = rnn.dynamic_rnn(
          self._cell,
          inputs,
          sequence_length=sequence_length,
          initial_state=initial_state,
          dtype=dtype,
          time_major=True,
          scope=scope)
      if is_list:
        # Convert outputs back to list
        outputs = array_ops.unpack(outputs)
    else:  # non-dynamic rnn
      if not is_list:
        inputs = array_ops.unpack(inputs)
      outputs, state = rnn.rnn(self._cell,
                               inputs,
                               initial_state=initial_state,
                               dtype=dtype,
                               sequence_length=sequence_length,
                               scope=scope)
      if not is_list:
        # Convert outputs back to tensor
        outputs = array_ops.pack(outputs)

    return outputs, state 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:37,代碼來源:fused_rnn_cell.py

示例8: tied_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
                                         loop_function=None, dtype=dtypes.float32, scope=None):
    """RNN sequence-to-sequence model with tied encoder and decoder parameters.

    This model first runs an RNN to encode encoder_inputs into a state vector, and
    then runs decoder, initialized with the last encoder state, on decoder_inputs.
    Encoder and decoder use the same RNN cell and share parameters.

    Args:
        encoder_inputs: A list of 2D Tensors [batch_size x input_size].
        decoder_inputs: A list of 2D Tensors [batch_size x input_size].
        cell: rnn_cell.RNNCell defining the cell function and size.
        loop_function: If not None, this function will be applied to i-th output
            in order to generate i+1-th input, and decoder_inputs will be ignored,
            except for the first element ("GO" symbol), see rnn_decoder for details.
        dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
        scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".

    Returns:
        A tuple of the form (outputs, state), where:
            outputs: A list of the same length as decoder_inputs of 2D Tensors with
                shape [batch_size x output_size] containing the generated outputs.
            state: The state of each decoder cell in each time-step. This is a list
                with length len(decoder_inputs) -- one item for each time-step.
                It is a 2D Tensor of shape [batch_size x cell.state_size].
    """
    with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
        scope = scope or "tied_rnn_seq2seq"
        _, enc_state = rnn.rnn(
                cell, encoder_inputs, dtype=dtype, scope=scope)
        variable_scope.get_variable_scope().reuse_variables()
        return rnn_decoder(decoder_inputs, enc_state, cell,
                                             loop_function=loop_function, scope=scope) 
開發者ID:thu-coai,項目名稱:ecm,代碼行數:35,代碼來源:seq2seq.py

示例9: rnn_model

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def rnn_model(x, weights, biases):
	"""Build a rnn model for image"""
	x = tf.transpose(x, [1, 0, 2])
	x = tf.reshape(x, [-1, n_input])
	x = tf.split(0, n_steps, x)

	lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
	outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
	return tf.matmul(outputs[-1], weights) + biases 
開發者ID:jiegzhan,項目名稱:image-classification-rnn,代碼行數:11,代碼來源:predict.py

示例10: predict

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def predict():
	"""Predict unseen images"""
	"""Step 0: load data and trained model"""
	mnist = input_data.read_data_sets("./data/", one_hot=True)
	checkpoint_dir = sys.argv[1]

	"""Step 1: build the rnn model"""
	x = tf.placeholder("float", [None, n_steps, n_input])
	y = tf.placeholder("float", [None, n_classes])

	weights = tf.Variable(tf.random_normal([n_hidden, n_classes]), name='weights')
	biases = tf.Variable(tf.random_normal([n_classes]), name='biases')

	pred = rnn_model(x, weights, biases)
	correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
	accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

	"""Step 2: predict new images with the trained model"""
	with tf.Session() as sess:
		sess.run(tf.initialize_all_variables())
		"""Step 2.0: load the trained model"""
		checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir + 'checkpoints')
		print('Loaded the trained model: {}'.format(checkpoint_file))

		saver = tf.train.Saver()
		saver.restore(sess, checkpoint_file)

		"""Step 2.1: predict new data"""
		test_len = 500
		test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
		test_label = mnist.test.labels[:test_len]
		print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label})) 
開發者ID:jiegzhan,項目名稱:image-classification-rnn,代碼行數:34,代碼來源:predict.py

示例11: rnn_model

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def rnn_model(x, weights, biases):
	"""RNN (LSTM or GRU) model for image"""
	x = tf.transpose(x, [1, 0, 2])
	x = tf.reshape(x, [-1, n_input])
	x = tf.split(0, n_steps, x)

	lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
	outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
	return tf.matmul(outputs[-1], weights) + biases 
開發者ID:jiegzhan,項目名稱:image-classification-rnn,代碼行數:11,代碼來源:train.py

示例12: train

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def train():
	"""Train an image classifier"""
	"""Step 0: load image data and training parameters"""
	mnist = input_data.read_data_sets("./data/", one_hot=True)
	parameter_file = sys.argv[1]
	params = json.loads(open(parameter_file).read())

	"""Step 1: build a rnn model for image"""
	x = tf.placeholder("float", [None, n_steps, n_input])
	y = tf.placeholder("float", [None, n_classes])

	weights = tf.Variable(tf.random_normal([n_hidden, n_classes]), name='weights')
	biases = tf.Variable(tf.random_normal([n_classes]), name='biases')

	pred = rnn_model(x, weights, biases)
	cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
	optimizer = tf.train.AdamOptimizer(learning_rate=params['learning_rate']).minimize(cost)

	correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
	accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

	"""Step 2: train the image classification model"""
	with tf.Session() as sess:
		sess.run(tf.initialize_all_variables())
		step = 1

		"""Step 2.0: create a directory for saving model files"""
		timestamp = str(int(time.time()))
		out_dir = os.path.abspath(os.path.join(os.path.curdir, "trained_model_" + timestamp))
		checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
		checkpoint_prefix = os.path.join(checkpoint_dir, "model")
		if not os.path.exists(checkpoint_dir):
			os.makedirs(checkpoint_dir)
		saver = tf.train.Saver(tf.all_variables())

		"""Step 2.1: train the image classifier batch by batch"""
		while step * params['batch_size'] < params['training_iters']:
			batch_x, batch_y = mnist.train.next_batch(params['batch_size'])
			# Reshape data to get 28 seq of 28 elements
			batch_x = batch_x.reshape((params['batch_size'], n_steps, n_input))
			sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})

			"""Step 2.2: save the model"""
			if step % params['display_step'] == 0:
				path = saver.save(sess, checkpoint_prefix, global_step=step)
				acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
				loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
				print('Iter: {}, Loss: {:.6f}, Accuracy: {:.6f}'.format(step * params['batch_size'], loss, acc))
			step += 1
		print("The training is done")

		"""Step 3: test the model"""
		test_len = 128
		test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
		test_label = mnist.test.labels[:test_len]
		print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label})) 
開發者ID:jiegzhan,項目名稱:image-classification-rnn,代碼行數:58,代碼來源:train.py

示例13: Forward

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def Forward(self, sess):
        lstm= tf.nn.rnn_cell.BasicLSTMCell(200, forget_bias=1.0)#LSTM size
        #lstm=tf.nn.rnn_cell.GRUCell(10)
        state=tf.zeros([1,200])# batch size, state_num=2*step_size
        num_steps=20# we don't need time step actually, the length of sentence is time-step
        x_in_batch = tf.transpose(self.x_in, [1, 0, 2])#change to 20*1*200
        x_in = tf.reshape(x_in_batch, [-1, 200])#change to 20*200
        x_in = tf.split(0, 20, x_in)#this will return a list, i.e. 20 sequences of 1*200

        if self.i == 0:
            with tf.variable_scope('output'):
                output_lstm, state=rnn.rnn(lstm, x_in, dtype=tf.float32)
                #output_lstm, state= lstm(x_in,state)#200*1
        else:
            with tf.variable_scope('output', reuse=True):
                output_lstm, state = rnn.rnn(lstm, x_in, dtype=tf.float32)
                #output_lstm, state= lstm(x_in,state)
        self.i+=1

        output_lstm=output_lstm[-1]# get the last element of a list

        lin_h=tf.matmul(output_lstm,self.hiddenLayer.W)+self.hiddenLayer.b
        #x_in=1*200, W=200*200

        reg_h = tf.reduce_sum(tf.gather(self.reg_lookup_table, self.reg_x), 0)#Num*200
        print "reg_h is"
        print reg_h
        h = self.activation(lin_h + tf.cast(reg_h,tf.float32))#1*200

        lin_output_pre = tf.matmul(h, self.outputLayer.W) + self.outputLayer.b
        lin_output = tf.nn.dropout(lin_output_pre, keep_prob=0.6)

        #h=1*200, outputLayer.W=200*63, lin_outupt=1*63
        #re.W:19156*63
        reg_output = tf.reduce_sum(tf.gather(self.skip_layer_re.W, self.reg_x), 0) + self.skip_layer_re.b
        print reg_output

        #x_in=1*200. ae.W=200*63
        ae_output = tf.matmul(x_in[-1], self.skip_layer_ae.W) + self.skip_layer_ae.b#use the last element as skip layer input
        ae_output = tf.nn.dropout(ae_output, keep_prob=0.5)

        output = tf.nn.softmax(lin_output + ae_output + reg_output)#XXX*63

        return output 
開發者ID:georgeiswang,項目名稱:Query_Classfication_LSTM,代碼行數:46,代碼來源:dnn_lstm.py

示例14: embedding_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn [as 別名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 別名]
def embedding_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
                          num_encoder_symbols, num_decoder_symbols,
                          embedding_size, output_projection=None,
                          feed_previous=False, dtype=dtypes.float32,
                          scope=None, beam_search=True, beam_size=10):
  """Embedding RNN sequence-to-sequence model.

  This model first embeds encoder_inputs by a newly created embedding (of shape
  [num_encoder_symbols x input_size]). Then it runs an RNN to encode
  embedded encoder_inputs into a state vector. Next, it embeds decoder_inputs
  by another newly created embedding (of shape [num_decoder_symbols x
  input_size]). Then it runs RNN decoder, initialized with the last
  encoder state, on embedded decoder_inputs.

  Args:
    encoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
    decoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
    cell: rnn_cell.RNNCell defining the cell function and size.
    num_encoder_symbols: Integer; number of symbols on the encoder side.
    num_decoder_symbols: Integer; number of symbols on the decoder side.
    embedding_size: Integer, the length of the embedding vector for each symbol.
    output_projection: None or a pair (W, B) of output projection weights and
      biases; W has shape [output_size x num_decoder_symbols] and B has
      shape [num_decoder_symbols]; if provided and feed_previous=True, each
      fed previous output will first be multiplied by W and added B.
    feed_previous: Boolean or scalar Boolean Tensor; if True, only the first
      of decoder_inputs will be used (the "GO" symbol), and all other decoder
      inputs will be taken from previous outputs (as in embedding_rnn_decoder).
      If False, decoder_inputs are used as given (the standard decoder case).
    dtype: The dtype of the initial state for both the encoder and encoder
      rnn cells (default: tf.float32).
    scope: VariableScope for the created subgraph; defaults to
      "embedding_rnn_seq2seq"

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x num_decoder_symbols] containing the generated
        outputs.
      state: The state of each decoder cell in each time-step. This is a list
        with length len(decoder_inputs) -- one item for each time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope(scope or "embedding_rnn_seq2seq"):
    # Encoder.
    encoder_cell = rnn_cell.EmbeddingWrapper(
        cell, embedding_classes=num_encoder_symbols,
        embedding_size=embedding_size)
    _, encoder_state = rnn.rnn(encoder_cell, encoder_inputs, dtype=dtype)

    # Decoder.
    if output_projection is None:
      cell = rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)


    return embedding_rnn_decoder(
          decoder_inputs, encoder_state, cell, num_decoder_symbols,
          embedding_size, output_projection=output_projection,
          feed_previous=feed_previous, beam_search=beam_search, beam_size=beam_size) 
開發者ID:pbhatia243,項目名稱:Neural_Conversation_Models,代碼行數:61,代碼來源:my_seq2seq.py


注:本文中的tensorflow.python.ops.rnn.rnn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。