當前位置: 首頁>>代碼示例>>Python>>正文


Python resources.initialize_resources方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.resources.initialize_resources方法的典型用法代碼示例。如果您正苦於以下問題:Python resources.initialize_resources方法的具體用法?Python resources.initialize_resources怎麽用?Python resources.initialize_resources使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.resources的用法示例。


在下文中一共展示了resources.initialize_resources方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _create_fake_checkpoint_with_tree_ensemble_proto

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def _create_fake_checkpoint_with_tree_ensemble_proto(self, est,
                                                       tree_ensemble_text):
    with tf.Graph().as_default():
      with ops.name_scope('boosted_trees') as name:
        tree_ensemble = boosted_trees_ops.TreeEnsemble(name=name)
        tree_ensemble_proto = boosted_trees_pb2.TreeEnsemble()
        text_format.Merge(tree_ensemble_text, tree_ensemble_proto)
        stamp_token, _ = tree_ensemble.serialize()
        restore_op = tree_ensemble.deserialize(
            stamp_token, tree_ensemble_proto.SerializeToString())

        with tf.compat.v1.Session() as sess:
          resources.initialize_resources(resources.shared_resources()).run()
          restore_op.run()
          saver = tf.compat.v1.train.Saver()
          save_path = os.path.join(est.model_dir, 'model.ckpt')
          saver.save(sess, save_path) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:19,代碼來源:boosted_trees_test.py

示例2: testBasicResourceVariable

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def testBasicResourceVariable(self):
    for dtype in [tf.half, tf.float32, tf.float64]:
      with self.test_session():
        var0 = resource_variable_ops.ResourceVariable(
            [1.0, 2.0], dtype=dtype)
        var1 = resource_variable_ops.ResourceVariable(
            [3.0, 4.0], dtype=dtype)
        grads0 = tf.constant([0.1, 0.1], dtype=dtype)
        grads1 = tf.constant([0.01, 0.01], dtype=dtype)
        sgd_op = tf.train.GradientDescentOptimizer(3.0).apply_gradients(zip(
            [grads0, grads1], [var0, var1]))
        # TODO(apassos) calling initialize_resources on all resources here
        # doesn't work because the sessions and graph are reused across unit
        # tests and this would mean trying to reinitialize variables. Figure out
        # a long-term solution for this.
        resources.initialize_resources([var0, var1]).run()
        # Fetch params to validate initial values
        self.assertAllCloseAccordingToType([1.0, 2.0], var0.eval())
        self.assertAllCloseAccordingToType([3.0, 4.0], var1.eval())
        # Run 1 step of sgd
        sgd_op.run()
        # Validate updated params
        self.assertAllCloseAccordingToType(
            [1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], var0.eval())
        self.assertAllCloseAccordingToType(
            [3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], var1.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:gradient_descent_test.py

示例3: testMinimizeResourceVariable

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def testMinimizeResourceVariable(self):
    for dtype in [tf.half, tf.float32, tf.float64]:
      with self.test_session():
        var0 = resource_variable_ops.ResourceVariable(
            [[1.0, 2.0]], dtype=dtype)
        var1 = resource_variable_ops.ResourceVariable(
            [3.0], dtype=dtype)
        x = tf.constant([[4.0], [5.0]], dtype=dtype)
        pred = tf.matmul(var0, x) + var1
        loss = pred*pred
        sgd_op = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
        # TODO(apassos) calling initialize_resources on all resources here
        # doesn't work because the sessions and graph are reused across unit
        # tests and this would mean trying to reinitialize variables. Figure out
        # a long-term solution for this.
        resources.initialize_resources([var0, var1]).run()
        # Fetch params to validate initial values
        self.assertAllCloseAccordingToType([[1.0, 2.0]], var0.eval())
        self.assertAllCloseAccordingToType([3.0], var1.eval())
        # Run 1 step of sgd
        sgd_op.run()
        # Validate updated params
        np_pred = 1.0 * 4.0 + 2.0 * 5.0 + 3.0
        np_grad = 2 * np_pred
        self.assertAllCloseAccordingToType(
            [[1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0]], var0.eval())
        self.assertAllCloseAccordingToType(
            [3.0 - np_grad], var1.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:30,代碼來源:gradient_descent_test.py

示例4: testMinimizeSparseResourceVariable

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def testMinimizeSparseResourceVariable(self):
    for dtype in [tf.half, tf.float32, tf.float64]:
      with self.test_session():
        var0 = resource_variable_ops.ResourceVariable(
            [[1.0, 2.0]], dtype=dtype)
        var1 = resource_variable_ops.ResourceVariable(
            [3.0], dtype=dtype)
        x = tf.constant([[4.0], [5.0]], dtype=dtype)
        pred = tf.matmul(tf.nn.embedding_lookup([var0], [0]), x)
        pred = tf.matmul(var0, x) + var1
        loss = pred*pred
        sgd_op = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
        # TODO(apassos) calling initialize_resources on all resources here
        # doesn't work because the sessions and graph are reused across unit
        # tests and this would mean trying to reinitialize variables. Figure out
        # a long-term solution for this.
        resources.initialize_resources([var0, var1]).run()
        # Fetch params to validate initial values
        self.assertAllCloseAccordingToType([[1.0, 2.0]], var0.eval())
        self.assertAllCloseAccordingToType([3.0], var1.eval())
        # Run 1 step of sgd
        sgd_op.run()
        # Validate updated params
        np_pred = 1.0 * 4.0 + 2.0 * 5.0 + 3.0
        np_grad = 2 * np_pred
        self.assertAllCloseAccordingToType(
            [[1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0]], var0.eval())
        self.assertAllCloseAccordingToType(
            [3.0 - np_grad], var1.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:31,代碼來源:gradient_descent_test.py

示例5: finalize

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def finalize(self):
    """Creates operations if needed and finalizes the graph."""
    if self._init_op is None:
      def default_init_op():
        return control_flow_ops.group(
            variables.global_variables_initializer(),
            resources.initialize_resources(resources.shared_resources()))
      self._init_op = Scaffold.get_or_default(
          'init_op',
          ops.GraphKeys.INIT_OP,
          default_init_op)
    if self._ready_op is None:
      def default_ready_op():
        return array_ops.concat(
            0,
            [variables.report_uninitialized_variables(),
             resources.report_uninitialized_resources()])
      self._ready_op = Scaffold.get_or_default(
          'ready_op', ops.GraphKeys.READY_OP,
          default_ready_op)
    if self._local_init_op is None:
      self._local_init_op = Scaffold.get_or_default(
          'local_init_op', ops.GraphKeys.LOCAL_INIT_OP,
          Scaffold._default_local_init_op)
    if self._summary_op is None:
      self._summary_op = Scaffold.get_or_default('summary_op',
                                                 ops.GraphKeys.SUMMARY_OP,
                                                 summary.merge_all)
    # pylint: disable=g-long-lambda
    if self._saver is None:
      self._saver = Scaffold.get_or_default(
          'saver',
          ops.GraphKeys.SAVERS,
          lambda: training_saver.Saver(sharded=True, allow_empty=True,
                                       write_version=saver_pb2.SaverDef.V2))
    # pylint: enable=g-long-lambda
    self._saver.build()

    ops.get_default_graph().finalize()
    return self 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:42,代碼來源:monitored_session.py

示例6: testInitialize

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def testInitialize(self):
    with self.test_session():
      handle = test_ops.stub_resource_handle_op(container="a", shared_name="b")
      resources.register_resource(
          handle=handle,
          create_op=test_ops.resource_create_op(handle),
          is_initialized_op=test_ops.resource_initialized_op(handle))
      self.assertEquals(len(resources.report_uninitialized_resources(
          resources.shared_resources()).eval()), 1)
      resources.initialize_resources(resources.shared_resources()).run()
      self.assertEquals(len(resources.report_uninitialized_resources(
          resources.shared_resources()).eval()), 0) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:ops_test.py

示例7: _init_graph

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def _init_graph(self):
        # Initialize all weights
        if not self._is_initialized:
            self.saver = tf.train.Saver()
            init_vars = tf.group(tf.global_variables_initializer(),
                                 resources.initialize_resources(
                                     resources.shared_resources()))
            self.session.run(init_vars)
            self._is_initialized = True
        # Restore weights if needed
        if self._to_be_restored:
            self.saver = tf.train.Saver()
            self.saver.restore(self.session, self._to_be_restored)
            self._to_be_restored = False 
開發者ID:limbo018,項目名稱:FRU,代碼行數:16,代碼來源:base.py

示例8: finalize

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def finalize(self):
    """Creates operations if needed and finalizes the graph."""
    if self._init_op is None:
      def default_init_op():
        return control_flow_ops.group(
            variables.global_variables_initializer(),
            resources.initialize_resources(resources.shared_resources()))
      self._init_op = Scaffold.get_or_default(
          'init_op',
          ops.GraphKeys.INIT_OP,
          default_init_op)
    if self._ready_op is None:
      def default_ready_op():
        return array_ops.concat([
            variables.report_uninitialized_variables(),
            resources.report_uninitialized_resources()
        ], 0)
      self._ready_op = Scaffold.get_or_default(
          'ready_op', ops.GraphKeys.READY_OP,
          default_ready_op)
    if self._ready_for_local_init_op is None:
      def default_ready_for_local_init_op():
        return variables.report_uninitialized_variables(
            variables.global_variables())
      self._ready_for_local_init_op = Scaffold.get_or_default(
          'ready_for_local_init_op', ops.GraphKeys.READY_FOR_LOCAL_INIT_OP,
          default_ready_for_local_init_op)
    if self._local_init_op is None:
      self._local_init_op = Scaffold.get_or_default(
          'local_init_op', ops.GraphKeys.LOCAL_INIT_OP,
          Scaffold._default_local_init_op)
    if self._summary_op is None:
      self._summary_op = Scaffold.get_or_default('summary_op',
                                                 ops.GraphKeys.SUMMARY_OP,
                                                 summary.merge_all)
    # pylint: disable=g-long-lambda
    if self._saver is None:
      self._saver = training_saver._get_saver_or_default()  # pylint: disable=protected-access
    # pylint: enable=g-long-lambda
    self._saver.build()

    ops.get_default_graph().finalize()
    return self 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:45,代碼來源:monitored_session.py

示例9: run_feeds_iter

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def run_feeds_iter(output_dict, feed_dicts, restore_checkpoint_path=None):
  """Run `output_dict` tensors with each input in `feed_dicts`.

  If `restore_checkpoint_path` is supplied, restore from checkpoint. Otherwise,
  init all variables.

  Args:
    output_dict: A `dict` mapping string names to `Tensor` objects to run.
      Tensors must all be from the same graph.
    feed_dicts: Iterable of `dict` objects of input values to feed.
    restore_checkpoint_path: A string containing the path to a checkpoint to
      restore.

  Yields:
    A sequence of dicts of values read from `output_dict` tensors, one item
    yielded for each item in `feed_dicts`. Keys are the same as `output_dict`,
    values are the results read from the corresponding `Tensor` in
    `output_dict`.

  Raises:
    ValueError: if `output_dict` or `feed_dicts` is None or empty.
  """
  if not output_dict:
    raise ValueError('output_dict is invalid: %s.' % output_dict)
  if not feed_dicts:
    raise ValueError('feed_dicts is invalid: %s.' % feed_dicts)

  graph = contrib_ops.get_graph_from_inputs(output_dict.values())
  with graph.as_default() as g:
    with tf_session.Session('') as session:
      session.run(
          resources.initialize_resources(resources.shared_resources() +
                                         resources.local_resources()))
      if restore_checkpoint_path:
        _restore_from_checkpoint(session, g, restore_checkpoint_path)
      else:
        session.run(variables.global_variables_initializer())
      session.run(variables.local_variables_initializer())
      session.run(lookup_ops.tables_initializer())
      coord = coordinator.Coordinator()
      threads = None
      try:
        threads = queue_runner.start_queue_runners(session, coord=coord)
        for f in feed_dicts:
          yield session.run(output_dict, f)
      finally:
        coord.request_stop()
        if threads:
          coord.join(threads, stop_grace_period_secs=120) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:51,代碼來源:graph_actions.py

示例10: finalize

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def finalize(self):
    """Creates operations if needed and finalizes the graph."""
    if self._init_op is None:
      def default_init_op():
        return control_flow_ops.group(
            variables.global_variables_initializer(),
            resources.initialize_resources(resources.shared_resources()))
      self._init_op = Scaffold.get_or_default(
          'init_op',
          ops.GraphKeys.INIT_OP,
          default_init_op)
    if self._ready_op is None:
      def default_ready_op():
        return array_ops.concat([
            variables.report_uninitialized_variables(),
            resources.report_uninitialized_resources()
        ], 0)
      self._ready_op = Scaffold.get_or_default(
          'ready_op', ops.GraphKeys.READY_OP,
          default_ready_op)
    if self._ready_for_local_init_op is None:
      def default_ready_for_local_init_op():
        return variables.report_uninitialized_variables(
            variables.global_variables())
      self._ready_for_local_init_op = Scaffold.get_or_default(
          'ready_for_local_init_op', ops.GraphKeys.READY_FOR_LOCAL_INIT_OP,
          default_ready_for_local_init_op)
    if self._local_init_op is None:
      self._local_init_op = Scaffold.get_or_default(
          'local_init_op', ops.GraphKeys.LOCAL_INIT_OP,
          Scaffold._default_local_init_op)
    if self._summary_op is None:
      self._summary_op = Scaffold.get_or_default('summary_op',
                                                 ops.GraphKeys.SUMMARY_OP,
                                                 summary.merge_all)
    # pylint: disable=g-long-lambda
    if self._saver is None:
      self._saver = Scaffold.get_or_default(
          'saver',
          ops.GraphKeys.SAVERS,
          lambda: training_saver.Saver(sharded=True, allow_empty=True,
                                       write_version=saver_pb2.SaverDef.V2))
    # pylint: enable=g-long-lambda
    self._saver.build()

    ops.get_default_graph().finalize()
    return self 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:49,代碼來源:monitored_session.py

示例11: run_feeds_iter

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def run_feeds_iter(output_dict, feed_dicts, restore_checkpoint_path=None):
  """Run `output_dict` tensors with each input in `feed_dicts`.

  If `restore_checkpoint_path` is supplied, restore from checkpoint. Otherwise,
  init all variables.

  Args:
    output_dict: A `dict` mapping string names to `Tensor` objects to run.
      Tensors must all be from the same graph.
    feed_dicts: Iterable of `dict` objects of input values to feed.
    restore_checkpoint_path: A string containing the path to a checkpoint to
      restore.

  Yields:
    A sequence of dicts of values read from `output_dict` tensors, one item
    yielded for each item in `feed_dicts`. Keys are the same as `output_dict`,
    values are the results read from the corresponding `Tensor` in
    `output_dict`.

  Raises:
    ValueError: if `output_dict` or `feed_dicts` is None or empty.
  """
  if not output_dict:
    raise ValueError('output_dict is invalid: %s.' % output_dict)
  if not feed_dicts:
    raise ValueError('feed_dicts is invalid: %s.' % feed_dicts)

  graph = contrib_ops.get_graph_from_inputs(output_dict.values())
  with graph.as_default() as g:
    with tf_session.Session('') as session:
      session.run(
          resources.initialize_resources(resources.shared_resources() +
                                         resources.local_resources()))
      if restore_checkpoint_path:
        _restore_from_checkpoint(session, g, restore_checkpoint_path)
      else:
        session.run(variables.global_variables_initializer())
      session.run(variables.local_variables_initializer())
      session.run(data_flow_ops.tables_initializer())
      coord = coordinator.Coordinator()
      threads = None
      try:
        threads = queue_runner.start_queue_runners(session, coord=coord)
        for f in feed_dicts:
          yield session.run(output_dict, f)
      finally:
        coord.request_stop()
        if threads:
          coord.join(threads, stop_grace_period_secs=120) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:51,代碼來源:graph_actions.py

示例12: __init__

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def __init__(self, options):
    # Current implementation of Quantiles Ops require mutation of resources
    # which is "impure" and necessitates atomicity. This lock enforces those
    # invariants, by protecting access to all callables of this graph state.
    #
    # TODO(KesterTong): Consider making this lock private and having methods of
    # this object only grab it when they need it. When that is done, remember to
    #   a) Annotate this class as Thread-safe (as opposed to thread-hostile) and
    #      update its documentation.
    #   b) Make all thread-hostile methods private and remove "thread_hostile"
    #      from their name.
    #   c) Expose the right public methods.
    #
    # TODO(KesterTong): Perhaps TF Quantiles Ops could be changed so that they
    # are truly pure. That would allow sharing the _QuantilesGraphState without
    # a need for locking.
    self.lock = threading.Lock()

    # Create a new session with a new graph for quantile ops.
    with tf.compat.v1.Graph().as_default() as graph:
      self._session = tf.compat.v1.Session(
          graph=graph, config=options.tf_config)

      # We will instantiate a single resource for the purpose of computing the
      # Quantiles operations.
      self._resource = self._create_resource(name='quantiles_combiner',
                                             eps=options.epsilon,
                                             max_elements=1 << 32,
                                             num_streams=options.num_features)

      self._session.run(
          resources.initialize_resources(resources.shared_resources()))

      self.thread_hostile_add_input_callable = self._make_add_input_callable(
          self._resource, options)
      self.thread_hostile_get_buckets_callable = (
          self._make_get_buckets_callable(self._resource, options))
      self.thread_hostile_merge_summary_callable = (
          self._make_merge_summary_callable(self._resource, options))
      # Create op to flush summaries and return a list representing the
      # summaries that were added to all accumulators so far.
      self.thread_hostile_flush_summary_callable = self._session.make_callable(
          fetches=tf.raw_ops.BoostedTreesFlushQuantileSummaries(
              quantile_stream_resource_handle=self._resource,
              num_features=options.num_features))

      graph.finalize()

    # We generate an empty summary by calling self._flush_summary_callable and
    # cache it for efficiency. Caching is safe (and as such the cache is public)
    # since it is immutable.
    with self.lock:
      self.empty_summary = self.thread_hostile_flush_summary_callable() 
開發者ID:tensorflow,項目名稱:transform,代碼行數:55,代碼來源:analyzers.py

示例13: finalize

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def finalize(self):
    """Creates operations if needed and finalizes the graph."""
    if self._init_op is None:
      def default_init_op():
        return tf.group(
            tf.global_variables_initializer(),
            resources.initialize_resources(resources.shared_resources()))
      self._init_op = TransferScaffold.get_or_default(
          'init_op',
          tf.GraphKeys.INIT_OP,
          default_init_op)
    if self._ready_op is None:
      def default_ready_op():
        return tf.concat([
            tf.report_uninitialized_variables(),
            resources.report_uninitialized_resources()
        ], 0)
      self._ready_op = TransferScaffold.get_or_default(
          'ready_op', tf.GraphKeys.READY_OP,
          default_ready_op)
    if self._ready_for_local_init_op is None:
      def default_ready_for_local_init_op():
        return tf.report_uninitialized_variables(
            tf.global_variables())
      self._ready_for_local_init_op = TransferScaffold.get_or_default(
          'ready_for_local_init_op', tf.GraphKeys.READY_FOR_LOCAL_INIT_OP,
          default_ready_for_local_init_op)
    if self._local_init_op is None:
      self._local_init_op = TransferScaffold.get_or_default(
          'local_init_op', tf.GraphKeys.LOCAL_INIT_OP,
          TransferScaffold.default_local_init_op)
    if self._summary_op is None:
      self._summary_op = TransferScaffold.get_or_default(
          'summary_op', tf.GraphKeys.SUMMARY_OP, tf.summary.merge_all)
    # pylint: disable=g-long-lambda
    if self._saver is None:
      self._saver = training_saver._get_saver_or_default()  # pylint: disable=protected-access
    # pylint: enable=g-long-lambda
    self._saver.build()

    # ops.get_default_graph().finalize()
    # logging.info('Graph was finalized.')
    return self 
開發者ID:NVIDIA,項目名稱:OpenSeq2Seq,代碼行數:45,代碼來源:helpers.py

示例14: _get_train_op_and_ensemble_and_boundaries

# 需要導入模塊: from tensorflow.python.ops import resources [as 別名]
# 或者: from tensorflow.python.ops.resources import initialize_resources [as 別名]
def _get_train_op_and_ensemble_and_boundaries(self,
                                                head,
                                                config,
                                                is_classification,
                                                train_in_memory,
                                                center_bias=False,
                                                use_numeric_columns=False):
    """Calls bt_model_fn() and returns the train_op and ensemble_serialzed."""
    features, labels = _make_train_input_fn(is_classification)()

    tree_hparams = boosted_trees._TreeHParams(  # pylint:disable=protected-access
        n_trees=2,
        max_depth=2,
        learning_rate=0.1,
        l1=0.,
        l2=0.01,
        tree_complexity=0.,
        min_node_weight=0.,
        center_bias=center_bias,
        pruning_mode='none',
        quantile_sketch_epsilon=0.01)

    if use_numeric_columns:
      columns = self._numeric_feature_columns
      num_resources = 2
    else:
      columns = self._feature_columns
      num_resources = 1
    estimator_spec = boosted_trees._bt_model_fn(  # pylint:disable=protected-access
        features=features,
        labels=labels,
        mode=ModeKeys.TRAIN,
        head=head,
        feature_columns=columns,
        tree_hparams=tree_hparams,
        example_id_column_name=EXAMPLE_ID_COLUMN,
        n_batches_per_layer=1,
        config=config,
        train_in_memory=train_in_memory)
    resources.initialize_resources(resources.shared_resources()).run()
    tf.compat.v1.initializers.global_variables().run()
    tf.compat.v1.initializers.local_variables().run()

    # Gets the train_op and serialized proto of the ensemble.
    shared_resources = resources.shared_resources()
    self.assertEqual(num_resources, len(shared_resources))
    train_op = estimator_spec.train_op
    with tf.control_dependencies([train_op]):
      _, ensemble_serialized = (
          gen_boosted_trees_ops.boosted_trees_serialize_ensemble(
              shared_resources[0].handle))

      if use_numeric_columns:
        bucket_boundaries = boosted_trees_ops.get_bucket_boundaries(
            shared_resources[1].handle, num_features=len(columns))
      else:
        bucket_boundaries = []

    return train_op, ensemble_serialized, bucket_boundaries 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:61,代碼來源:boosted_trees_test.py


注:本文中的tensorflow.python.ops.resources.initialize_resources方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。