本文整理匯總了Python中tensorflow.python.ops.random_ops.truncated_normal方法的典型用法代碼示例。如果您正苦於以下問題:Python random_ops.truncated_normal方法的具體用法?Python random_ops.truncated_normal怎麽用?Python random_ops.truncated_normal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.random_ops
的用法示例。
在下文中一共展示了random_ops.truncated_normal方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import truncated_normal [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
if dtype is None:
dtype = self.dtype
scale = self.scale
scale_shape = shape
if partition_info is not None:
scale_shape = partition_info.full_shape
fan_in, fan_out = _compute_fans(scale_shape)
if self.mode == "fan_in":
scale /= max(1., fan_in)
elif self.mode == "fan_out":
scale /= max(1., fan_out)
else:
scale /= max(1., (fan_in + fan_out) / 2.)
if self.distribution == "normal":
stddev = math.sqrt(scale)
return random_ops.truncated_normal(shape, 0.0, stddev,
dtype, seed=self.seed)
else:
limit = math.sqrt(3.0 * scale)
return random_ops.random_uniform(shape, -limit, limit,
dtype, seed=self.seed)
示例2: parameterized_vs_naive
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import truncated_normal [as 別名]
def parameterized_vs_naive(shape, num_iters, use_gpu=False):
np.random.seed(1618) # Make it reproducible.
# No CSE/CF.
optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0)
config = tf.ConfigProto(
graph_options=tf.GraphOptions(optimizer_options=optimizer_options))
with tf.Session(config=config) as sess:
with tf.device("/cpu:0" if not use_gpu else None):
param_op = tf.group(random_ops.parameterized_truncated_normal(shape))
naive_op = tf.group(random_ops.truncated_normal(shape))
# Burn-in to avoid session setup costs in the timing.
sess.run(param_op)
sess.run(param_op)
param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters)
sess.run(naive_op)
sess.run(naive_op)
naive_dt = timeit.timeit(lambda: sess.run(naive_op), number=num_iters)
return param_dt, naive_dt
示例3: __call__
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import truncated_normal [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
if dtype is None:
dtype = self.dtype
scale = self.scale
scale_shape = shape
if partition_info is not None:
scale_shape = partition_info.full_shape
fan_in, fan_out = _compute_fans(scale_shape)
if self.mode == "fan_in":
scale /= max(1., fan_in)
elif self.mode == "fan_out":
scale /= max(1., fan_out)
else:
scale /= max(1., (fan_in + fan_out) / 2.)
if self.distribution == "normal":
stddev = math.sqrt(scale)
return random_ops.truncated_normal(
shape, 0.0, stddev, dtype, seed=self.seed)
else:
limit = math.sqrt(3.0 * scale)
return random_ops.random_uniform(
shape, -limit, limit, dtype, seed=self.seed)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:24,代碼來源:init_ops.py
示例4: _add_scaled_noise_to_gradients
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import truncated_normal [as 別名]
def _add_scaled_noise_to_gradients(grads_and_vars, gradient_noise_scale):
"""Adds scaled noise from a 0-mean normal distribution to gradients."""
gradients, variables = zip(*grads_and_vars)
noisy_gradients = []
for gradient in gradients:
if gradient is None:
noisy_gradients.append(None)
continue
if isinstance(gradient, ops.IndexedSlices):
gradient_shape = gradient.dense_shape
else:
gradient_shape = gradient.get_shape()
noise = random_ops.truncated_normal(gradient_shape) * gradient_noise_scale
noisy_gradients.append(gradient + noise)
return list(zip(noisy_gradients, variables))
示例5: truncated_normal
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import truncated_normal [as 別名]
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
"""Returns a tensor with truncated random normal distribution of values.
The generated values follow a normal distribution
with specified mean and standard deviation,
except that values whose magnitude is more than
two standard deviations from the mean are dropped and re-picked.
Arguments:
shape: A tuple of integers, the shape of tensor to create.
mean: Mean of the values.
stddev: Standard deviation of the values.
dtype: String, dtype of returned tensor.
seed: Integer, random seed.
Returns:
A tensor.
"""
if dtype is None:
dtype = floatx()
if seed is None:
seed = np.random.randint(10e6)
return random_ops.truncated_normal(
shape, mean, stddev, dtype=dtype, seed=seed)
# CTC
# tensorflow has a native implemenation, but it uses sparse tensors
# and therefore requires a wrapper for Keras. The functions below convert
# dense to sparse tensors and also wraps up the beam search code that is
# in tensorflow's CTC implementation
示例6: sequence_softmax
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import truncated_normal [as 別名]
def sequence_softmax(inputs, noutput, scope=None, name=None, linear_name=None):
"""Run a softmax layer over all the time steps of an input sequence.
Args:
inputs: (length, batch_size, depth) tensor
noutput: output depth
scope: optional scope name
name: optional name for output tensor
linear_name: name for linear (pre-softmax) output
Returns:
A tensor of size (length, batch_size, noutput).
"""
length, _, ninputs = _shape(inputs)
inputs_u = array_ops.unstack(inputs)
output_u = []
with variable_scope.variable_scope(scope, "SequenceSoftmax", [inputs]):
initial_w = random_ops.truncated_normal([0 + ninputs, noutput], stddev=0.1)
initial_b = constant_op.constant(0.1, shape=[noutput])
w = variables.model_variable("weights", initializer=initial_w)
b = variables.model_variable("biases", initializer=initial_b)
for i in xrange(length):
with variable_scope.variable_scope(scope, "SequenceSoftmaxStep",
[inputs_u[i]]):
# TODO(tmb) consider using slim.fully_connected(...,
# activation_fn=tf.nn.softmax)
linear = nn_ops.xw_plus_b(inputs_u[i], w, b, name=linear_name)
output = nn_ops.softmax(linear)
output_u += [output]
outputs = array_ops.stack(output_u, name=name)
return outputs
示例7: truncated_normal_initializer
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import truncated_normal [as 別名]
def truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None,
dtype=dtypes.float32):
"""Returns an initializer that generates a truncated normal distribution.
These values are similar to values from a `random_normal_initializer`
except that values more than two standard deviations from the mean
are discarded and re-drawn. This is the recommended initializer for
neural network weights and filters.
Args:
mean: a python scalar or a scalar tensor. Mean of the random values
to generate.
stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.
seed: A Python integer. Used to create random seeds. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
dtype: The data type. Only floating point types are supported.
Returns:
An initializer that generates tensors with a truncated normal
distribution.
Raises:
ValueError: if `dtype` is not a floating point type.
"""
def _initializer(shape, dtype=_assert_float_dtype(dtype),
partition_info=None):
return random_ops.truncated_normal(shape, mean, stddev, dtype, seed=seed)
return _initializer