本文整理匯總了Python中tensorflow.python.ops.random_ops.random_shuffle方法的典型用法代碼示例。如果您正苦於以下問題:Python random_ops.random_shuffle方法的具體用法?Python random_ops.random_shuffle怎麽用?Python random_ops.random_shuffle使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.random_ops
的用法示例。
在下文中一共展示了random_ops.random_shuffle方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_shuffle [as 別名]
def __init__(self,
shuffle_fn=None,
random_fn=None,
random_next_sentence_threshold=0.5):
"""Creates an instance of the `NextSentencePredictionExtractor`.
Args:
shuffle_fn: An op that shuffles the sentences in a random order. Default
uses tf.random.shuffle. The output of `shuffle_fn` are the candidates
used for the random next sentence.
random_fn: An op that returns a random float from [0, 1]. If the results
of this function passes `random_next_sentence_threshold` then a random
sentence is swapped in as it's accompanying segment. Default uses
tf.random.uniform.
random_next_sentence_threshold: A float threshold that determines whether
or not a random sentence is injected instead of the next sentence. The
higher the threshold, the higher the likelihood of inserting a random
sentence.
"""
self._shuffle_fn = shuffle_fn or random_ops.random_shuffle
self._random_fn = random_fn or random_ops.random_uniform
self._random_next_sentence_threshold = random_next_sentence_threshold
示例2: get_grow_tensor
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_shuffle [as 別名]
def get_grow_tensor(self, weights, method):
"""Different ways to initialize new connections.
Args:
weights: tf.Tensor or Variable.
method: str, available options: 'zeros', 'random_normal', 'random_uniform'
and 'initial_value'
Returns:
tf.Tensor same shape and type as weights.
Raises:
ValueError, when the method is not valid.
"""
if not isinstance(method, six.string_types):
raise ValueError('Grow-Init: %s is not a string' % method)
if method == 'zeros':
grow_tensor = array_ops.zeros_like(weights, dtype=weights.dtype)
elif method.startswith('initial_dist'):
original_shape = weights.initial_value.shape
divisor = extract_number(method)
grow_tensor = array_ops.reshape(
random_ops.random_shuffle(array_ops.reshape(
weights.initial_value, [-1])),
original_shape) / divisor
elif method.startswith('random_normal'):
stddev = math_ops.reduce_std(weights)
divisor = extract_number(method)
grow_tensor = self._random_normal(
weights.shape, stddev=stddev, dtype=weights.dtype,
seed=hash(weights.name + 'grow_init_n')) / divisor
elif method.startswith('random_uniform'):
mean = math_ops.reduce_mean(math_ops.abs(weights))
divisor = extract_number(method)
grow_tensor = self._random_uniform(
weights.shape, minval=-mean, maxval=mean, dtype=weights.dtype,
seed=hash(weights.name + 'grow_init_u')) / divisor
else:
raise ValueError('Grow-Init: %s is not a valid option.' % method)
return grow_tensor
示例3: call
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_shuffle [as 別名]
def call(self, inputs, training=None, **kwargs):
inputs, memory = inputs
batch_size = K.shape(inputs)[0]
seq_len = K.shape(inputs)[1]
mem_mask = K.tile(K.ones_like(memory[:, :, :1], dtype=K.floatx()), [1, 1, seq_len])
# Build content mask with random permutation
ranges = K.tile(K.expand_dims(K.arange(0, seq_len), axis=-1), [1, batch_size])
if self.enabled:
shuffle = random_shuffle(ranges)
else:
shuffle = ranges
if self.directional:
shuffled = K.in_train_phase(shuffle, ranges, training)
else:
if self.enabled:
shuffled = K.in_train_phase(shuffle, ranges + seq_len, training)
else:
shuffled = ranges + seq_len
ranges = K.expand_dims(K.permute_dimensions(ranges, [1, 0]), axis=-1)
shuffled = K.expand_dims(K.permute_dimensions(shuffled, [1, 0]), axis=1)
content_mask = K.cast(ranges <= shuffled, dtype=K.floatx())
# Build query mask based on content mask
ranges = K.arange(0, seq_len)
eye = K.equal(K.expand_dims(ranges, axis=0), K.expand_dims(ranges, axis=-1))
eye = K.expand_dims(K.cast(eye, dtype=K.floatx()), axis=0)
query_mask = content_mask * (1.0 - eye)
content_mask = K.concatenate([mem_mask, content_mask], axis=1)
query_mask = K.concatenate([mem_mask, query_mask], axis=1)
return [
K.permute_dimensions(content_mask, [0, 2, 1]),
K.permute_dimensions(query_mask, [0, 2, 1]),
]
示例4: input_producer
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_shuffle [as 別名]
def input_producer(input_tensor, element_shape=None, num_epochs=None,
shuffle=True, seed=None, capacity=32, shared_name=None,
summary_name=None, name=None):
"""Output the rows of `input_tensor` to a queue for an input pipeline.
Args:
input_tensor: A tensor with the rows to produce. Must be at least
one-dimensional. Must either have a fully-defined shape, or
`element_shape` must be defined.
element_shape: (Optional.) A `TensorShape` representing the shape of a
row of `input_tensor`, if it cannot be inferred.
num_epochs: (Optional.) An integer. If specified `input_producer` produces
each row of `input_tensor` `num_epochs` times before generating an
`OutOfRange` error. If not specified, `input_producer` can cycle through
the rows of `input_tensor` an unlimited number of times.
shuffle: (Optional.) A boolean. If true, the rows are randomly shuffled
within each epoch.
seed: (Optional.) An integer. The seed to use if `shuffle` is true.
capacity: (Optional.) The capacity of the queue to be used for buffering
the input.
shared_name: (Optional.) If set, this queue will be shared under the given
name across multiple sessions.
summary_name: (Optional.) If set, a scalar summary for the current queue
size will be generated, using this name as part of the tag.
name: (Optional.) A name for queue.
Returns:
A queue with the output rows. A `QueueRunner` for the queue is
added to the current `QUEUE_RUNNER` collection of the current
graph.
Raises:
ValueError: If the shape of the input cannot be inferred from the arguments.
"""
with ops.name_scope(name, "input_producer", [input_tensor]):
input_tensor = ops.convert_to_tensor(input_tensor, name="input_tensor")
element_shape = input_tensor.get_shape()[1:].merge_with(element_shape)
if not element_shape.is_fully_defined():
raise ValueError("Either `input_tensor` must have a fully defined shape "
"or `element_shape` must be specified")
if shuffle:
input_tensor = random_ops.random_shuffle(input_tensor, seed=seed)
input_tensor = limit_epochs(input_tensor, num_epochs)
q = data_flow_ops.FIFOQueue(capacity=capacity,
dtypes=[input_tensor.dtype.base_dtype],
shapes=[element_shape],
shared_name=shared_name, name=name)
enq = q.enqueue_many([input_tensor])
queue_runner.add_queue_runner(queue_runner.QueueRunner(q, [enq]))
if summary_name is not None:
summary.scalar("queue/%s/%s" % (q.name, summary_name),
math_ops.cast(q.size(), dtypes.float32) * (1. / capacity))
return q