本文整理匯總了Python中tensorflow.python.ops.random_ops.random_normal方法的典型用法代碼示例。如果您正苦於以下問題:Python random_ops.random_normal方法的具體用法?Python random_ops.random_normal怎麽用?Python random_ops.random_normal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.random_ops
的用法示例。
在下文中一共展示了random_ops.random_normal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _sample_n(self, n, seed=None):
# The sampling method comes from the fact that if:
# X ~ Normal(0, 1)
# Z ~ Chi2(df)
# Y = X / sqrt(Z / df)
# then:
# Y ~ StudentT(df).
shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
df = self.df * array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)
gamma_sample = random_ops.random_gamma(
[n],
0.5 * df,
beta=0.5,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, salt="student_t"))
samples = normal_sample * math_ops.rsqrt(gamma_sample / df)
return samples * self.scale + self.loc # Abs(scale) not wanted.
示例2: _make_x
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _make_x(self, operator, adjoint):
# Value of adjoint makes no difference because the operator is square.
# Return the number of systems to solve, R, equal to 1 or 2.
r = self._get_num_systems(operator)
# If operator.shape = [B1,...,Bb, N, N] this returns a random matrix of
# shape [B1,...,Bb, N, R], R = 1 or 2.
if operator.shape.is_fully_defined():
batch_shape = operator.batch_shape.as_list()
n = operator.domain_dimension.value
x_shape = batch_shape + [n, r]
else:
batch_shape = operator.batch_shape_tensor()
n = operator.domain_dimension_tensor()
x_shape = array_ops.concat((batch_shape, [n, r]), 0)
return random_normal(x_shape, dtype=operator.dtype)
示例3: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _sample_n(self, n, seed=None):
# The sampling method comes from the fact that if:
# X ~ Normal(0, 1)
# Z ~ Chi2(df)
# Y = X / sqrt(Z / df)
# then:
# Y ~ StudentT(df).
shape = array_ops.concat([[n], self.batch_shape()], 0)
normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
df = self.df * array_ops.ones(self.batch_shape(), dtype=self.dtype)
gamma_sample = random_ops.random_gamma(
[n],
0.5 * df,
beta=0.5,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, salt="student_t"))
samples = normal_sample / math_ops.sqrt(gamma_sample / df)
return samples * self.sigma + self.mu # Abs(sigma) not wanted.
示例4: _make_x
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _make_x(self, operator, adjoint):
# Value of adjoint makes no difference because the operator is square.
# Return the number of systems to solve, R, equal to 1 or 2.
r = self._get_num_systems(operator)
# If operator.shape = [B1,...,Bb, N, N] this returns a random matrix of
# shape [B1,...,Bb, N, R], R = 1 or 2.
if operator.shape.is_fully_defined():
batch_shape = operator.batch_shape.as_list()
n = operator.domain_dimension.value
x_shape = batch_shape + [n, r]
else:
batch_shape = operator.batch_shape_dynamic()
n = operator.domain_dimension_dynamic()
x_shape = array_ops.concat((batch_shape, [n, r]), 0)
return random_normal(x_shape, dtype=operator.dtype)
示例5: _check_tuple_cell
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _check_tuple_cell(self, *args, **kwargs):
batch_size = 2
num_units = 3
depth = 4
g = ops.Graph()
with self.test_session(graph=g) as sess:
with g.as_default():
cell = contrib_rnn_cell.NLSTMCell(num_units, depth, *args, **kwargs)
init_state = cell.zero_state(batch_size, dtype=dtypes.float32)
output, new_state = cell(
inputs=random_ops.random_normal([batch_size, 5]),
state=init_state)
variables.global_variables_initializer().run()
vals = sess.run([output, new_state])
self.assertAllEqual(vals[0], vals[1][0])
self.assertAllEqual(vals[0].shape, [2, 3])
for val in vals[1]:
self.assertAllEqual(val.shape, [2, 3])
self.assertEqual(len(vals[1]), 5)
self.assertAllEqual(cell.state_size, [num_units] * (depth + 1))
self.assertEqual(cell.depth, depth)
self.assertEqual(cell.output_size, num_units)
示例6: _check_non_tuple_cell
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _check_non_tuple_cell(self, *args, **kwargs):
batch_size = 2
num_units = 3
depth = 2
g = ops.Graph()
with self.test_session(graph=g) as sess:
with g.as_default():
cell = contrib_rnn_cell.NLSTMCell(num_units, depth,
*args, **kwargs)
init_state = cell.zero_state(batch_size, dtype=dtypes.float32)
output, new_state = cell(
inputs=random_ops.random_normal([batch_size, 5]),
state=init_state)
variables.global_variables_initializer().run()
vals = sess.run([output, new_state])
self.assertAllEqual(vals[0], vals[1][:, :3])
self.assertAllEqual(vals[0].shape, [2, 3])
self.assertAllEqual(vals[1].shape, [2, 9])
self.assertEqual(cell.state_size, num_units * (depth + 1))
self.assertEqual(cell.depth, depth)
self.assertEqual(cell.output_size, num_units)
示例7: random_normal_initializer
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def random_normal_initializer(mean=0.0, stddev=1.0, seed=None,
dtype=dtypes.float32):
"""Returns an initializer that generates tensors with a normal distribution.
Args:
mean: a python scalar or a scalar tensor. Mean of the random values
to generate.
stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.
seed: A Python integer. Used to create random seeds. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
dtype: The data type. Only floating point types are supported.
Returns:
An initializer that generates tensors with a normal distribution.
Raises:
ValueError: if `dtype` is not a floating point type.
"""
def _initializer(shape, dtype=_assert_float_dtype(dtype),
partition_info=None):
return random_ops.random_normal(shape, mean, stddev, dtype, seed=seed)
return _initializer
示例8: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _sample_n(self, n, seed=None):
# Recall _assert_valid_mu ensures mu and self._cov have same batch shape.
shape = array_ops.concat(0, [self._cov.vector_shape(), [n]])
white_samples = random_ops.random_normal(shape=shape,
mean=0.,
stddev=1.,
dtype=self.dtype,
seed=seed)
correlated_samples = self._cov.sqrt_matmul(white_samples)
# Move the last dimension to the front
perm = array_ops.concat(0, (
array_ops.pack([array_ops.rank(correlated_samples) - 1]),
math_ops.range(0, array_ops.rank(correlated_samples) - 1)))
# TODO(ebrevdo): Once we get a proper tensor contraction op,
# perform the inner product using that instead of batch_matmul
# and this slow transpose can go away!
correlated_samples = array_ops.transpose(correlated_samples, perm)
samples = correlated_samples + self.mu
return samples
示例9: random_normal
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
"""Returns a tensor with normal distribution of values.
Arguments:
shape: A tuple of integers, the shape of tensor to create.
mean: A float, mean of the normal distribution to draw samples.
stddev: A float, standard deviation of the normal distribution
to draw samples.
dtype: String, dtype of returned tensor.
seed: Integer, random seed.
Returns:
A tensor.
"""
if dtype is None:
dtype = floatx()
if seed is None:
seed = np.random.randint(10e6)
return random_ops.random_normal(
shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:backend.py
示例10: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _sample_n(self, n, seed=None):
shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
sampled = random_ops.random_normal(
shape=shape, mean=0., stddev=1., dtype=self.loc.dtype, seed=seed)
return sampled * self.scale + self.loc
示例11: __call__
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
if dtype is None:
dtype = self.dtype
return random_ops.random_normal(shape, self.mean, self.stddev,
dtype, seed=self.seed)
示例12: _create_factors
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _create_factors(cls, rows, cols, num_shards, init, name):
"""Helper function to create row and column factors."""
if callable(init):
init = init()
if isinstance(init, list):
assert len(init) == num_shards
elif isinstance(init, str) and init == "random":
pass
elif num_shards == 1:
init = [init]
sharded_matrix = []
sizes = cls._shard_sizes(rows, num_shards)
assert len(sizes) == num_shards
def make_initializer(i, size):
def initializer():
if init == "random":
return random_ops.random_normal([size, cols])
else:
return init[i]
return initializer
for i, size in enumerate(sizes):
var_name = "%s_shard_%d" % (name, i)
var_init = make_initializer(i, size)
sharded_matrix.append(
variable_scope.variable(
var_init, dtype=dtypes.float32, name=var_name))
return sharded_matrix
示例13: random_tril_matrix
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def random_tril_matrix(shape,
dtype,
force_well_conditioned=False,
remove_upper=True):
"""[batch] lower triangular matrix.
Args:
shape: `TensorShape` or Python `list`. Shape of the returned matrix.
dtype: `TensorFlow` `dtype` or Python dtype
force_well_conditioned: Python `bool`. If `True`, returned matrix will have
eigenvalues with modulus in `(1, 2)`. Otherwise, eigenvalues are unit
normal random variables.
remove_upper: Python `bool`.
If `True`, zero out the strictly upper triangle.
If `False`, the lower triangle of returned matrix will have desired
properties, but will not not have the strictly upper triangle zero'd out.
Returns:
`Tensor` with desired shape and dtype.
"""
with ops.name_scope("random_tril_matrix"):
# Totally random matrix. Has no nice properties.
tril = random_normal(shape, dtype=dtype)
if remove_upper:
tril = array_ops.matrix_band_part(tril, -1, 0)
# Create a diagonal with entries having modulus in [1, 2].
if force_well_conditioned:
maxval = ops.convert_to_tensor(np.sqrt(2.), dtype=dtype.real_dtype)
diag = random_sign_uniform(
shape[:-1], dtype=dtype, minval=1., maxval=maxval)
tril = array_ops.matrix_set_diag(tril, diag)
return tril
示例14: random_normal
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def random_normal(shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, seed=None):
"""Tensor with (possibly complex) Gaussian entries.
Samples are distributed like
```
N(mean, stddev^2), if dtype is real,
X + iY, where X, Y ~ N(mean, stddev^2) if dtype is complex.
```
Args:
shape: `TensorShape` or Python list. Shape of the returned tensor.
mean: `Tensor` giving mean of normal to sample from.
stddev: `Tensor` giving stdev of normal to sample from.
dtype: `TensorFlow` `dtype` or numpy dtype
seed: Python integer seed for the RNG.
Returns:
`Tensor` with desired shape and dtype.
"""
dtype = dtypes.as_dtype(dtype)
with ops.name_scope("random_normal"):
samples = random_ops.random_normal(
shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
if dtype.is_complex:
if seed is not None:
seed += 1234
more_samples = random_ops.random_normal(
shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
samples = math_ops.complex(samples, more_samples)
return samples
示例15: testOneThread
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def testOneThread(self):
with self.test_session() as sess:
batch_size = 10
image_size = 32
num_batches = 5
zero64 = constant_op.constant(0, dtype=dtypes.int64)
examples = variables.Variable(zero64)
counter = examples.count_up_to(num_batches * batch_size)
image = random_ops.random_normal(
[image_size, image_size, 3], dtype=dtypes.float32, name='images')
label = random_ops.random_uniform(
[1], 0, 10, dtype=dtypes.int32, name='labels')
batches = input_lib.batch(
[counter, image, label], batch_size=batch_size, num_threads=1)
batches = prefetch_queue.prefetch_queue(batches).dequeue()
variables.global_variables_initializer().run()
threads = queue_runner_impl.start_queue_runners()
for i in range(num_batches):
results = sess.run(batches)
self.assertAllEqual(results[0],
np.arange(i * batch_size, (i + 1) * batch_size))
self.assertEquals(results[1].shape,
(batch_size, image_size, image_size, 3))
self.assertEquals(results[2].shape, (batch_size, 1))
# Reached the limit.
with self.assertRaises(errors_impl.OutOfRangeError):
sess.run(batches)
for thread in threads:
thread.join()