當前位置: 首頁>>代碼示例>>Python>>正文


Python random_ops.random_normal方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.random_ops.random_normal方法的典型用法代碼示例。如果您正苦於以下問題:Python random_ops.random_normal方法的具體用法?Python random_ops.random_normal怎麽用?Python random_ops.random_normal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.random_ops的用法示例。


在下文中一共展示了random_ops.random_normal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _sample_n

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _sample_n(self, n, seed=None):
    # The sampling method comes from the fact that if:
    #   X ~ Normal(0, 1)
    #   Z ~ Chi2(df)
    #   Y = X / sqrt(Z / df)
    # then:
    #   Y ~ StudentT(df).
    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
    normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
    df = self.df * array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)
    gamma_sample = random_ops.random_gamma(
        [n],
        0.5 * df,
        beta=0.5,
        dtype=self.dtype,
        seed=distribution_util.gen_new_seed(seed, salt="student_t"))
    samples = normal_sample * math_ops.rsqrt(gamma_sample / df)
    return samples * self.scale + self.loc  # Abs(scale) not wanted. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:student_t.py

示例2: _make_x

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _make_x(self, operator, adjoint):
    # Value of adjoint makes no difference because the operator is square.
    # Return the number of systems to solve, R, equal to 1 or 2.
    r = self._get_num_systems(operator)
    # If operator.shape = [B1,...,Bb, N, N] this returns a random matrix of
    # shape [B1,...,Bb, N, R], R = 1 or 2.
    if operator.shape.is_fully_defined():
      batch_shape = operator.batch_shape.as_list()
      n = operator.domain_dimension.value
      x_shape = batch_shape + [n, r]
    else:
      batch_shape = operator.batch_shape_tensor()
      n = operator.domain_dimension_tensor()
      x_shape = array_ops.concat((batch_shape, [n, r]), 0)

    return random_normal(x_shape, dtype=operator.dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:linear_operator_test_util.py

示例3: _sample_n

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _sample_n(self, n, seed=None):
    # The sampling method comes from the fact that if:
    #   X ~ Normal(0, 1)
    #   Z ~ Chi2(df)
    #   Y = X / sqrt(Z / df)
    # then:
    #   Y ~ StudentT(df).
    shape = array_ops.concat([[n], self.batch_shape()], 0)
    normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
    df = self.df * array_ops.ones(self.batch_shape(), dtype=self.dtype)
    gamma_sample = random_ops.random_gamma(
        [n],
        0.5 * df,
        beta=0.5,
        dtype=self.dtype,
        seed=distribution_util.gen_new_seed(seed, salt="student_t"))
    samples = normal_sample / math_ops.sqrt(gamma_sample / df)
    return samples * self.sigma + self.mu  # Abs(sigma) not wanted. 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:student_t.py

示例4: _make_x

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _make_x(self, operator, adjoint):
    # Value of adjoint makes no difference because the operator is square.
    # Return the number of systems to solve, R, equal to 1 or 2.
    r = self._get_num_systems(operator)
    # If operator.shape = [B1,...,Bb, N, N] this returns a random matrix of
    # shape [B1,...,Bb, N, R], R = 1 or 2.
    if operator.shape.is_fully_defined():
      batch_shape = operator.batch_shape.as_list()
      n = operator.domain_dimension.value
      x_shape = batch_shape + [n, r]
    else:
      batch_shape = operator.batch_shape_dynamic()
      n = operator.domain_dimension_dynamic()
      x_shape = array_ops.concat((batch_shape, [n, r]), 0)

    return random_normal(x_shape, dtype=operator.dtype) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:linear_operator_test_util.py

示例5: _check_tuple_cell

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _check_tuple_cell(self, *args, **kwargs):
    batch_size = 2
    num_units = 3
    depth = 4
    g = ops.Graph()
    with self.test_session(graph=g) as sess:
      with g.as_default():
        cell = contrib_rnn_cell.NLSTMCell(num_units, depth, *args, **kwargs)
        init_state = cell.zero_state(batch_size, dtype=dtypes.float32)
        output, new_state = cell(
            inputs=random_ops.random_normal([batch_size, 5]),
            state=init_state)
        variables.global_variables_initializer().run()
        vals = sess.run([output, new_state])
    self.assertAllEqual(vals[0], vals[1][0])
    self.assertAllEqual(vals[0].shape, [2, 3])
    for val in vals[1]:
      self.assertAllEqual(val.shape, [2, 3])
    self.assertEqual(len(vals[1]), 5)
    self.assertAllEqual(cell.state_size, [num_units] * (depth + 1))
    self.assertEqual(cell.depth, depth)
    self.assertEqual(cell.output_size, num_units) 
開發者ID:hannw,項目名稱:nlstm,代碼行數:24,代碼來源:rnn_cell_test.py

示例6: _check_non_tuple_cell

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _check_non_tuple_cell(self, *args, **kwargs):
    batch_size = 2
    num_units = 3
    depth = 2
    g = ops.Graph()
    with self.test_session(graph=g) as sess:
      with g.as_default():
        cell = contrib_rnn_cell.NLSTMCell(num_units, depth,
                                          *args, **kwargs)
        init_state = cell.zero_state(batch_size, dtype=dtypes.float32)
        output, new_state = cell(
            inputs=random_ops.random_normal([batch_size, 5]),
            state=init_state)
        variables.global_variables_initializer().run()
        vals = sess.run([output, new_state])
    self.assertAllEqual(vals[0], vals[1][:, :3])
    self.assertAllEqual(vals[0].shape, [2, 3])
    self.assertAllEqual(vals[1].shape, [2, 9])
    self.assertEqual(cell.state_size, num_units * (depth + 1))
    self.assertEqual(cell.depth, depth)
    self.assertEqual(cell.output_size, num_units) 
開發者ID:hannw,項目名稱:nlstm,代碼行數:23,代碼來源:rnn_cell_test.py

示例7: random_normal_initializer

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def random_normal_initializer(mean=0.0, stddev=1.0, seed=None,
                              dtype=dtypes.float32):
  """Returns an initializer that generates tensors with a normal distribution.

  Args:
    mean: a python scalar or a scalar tensor. Mean of the random values
      to generate.
    stddev: a python scalar or a scalar tensor. Standard deviation of the
      random values to generate.
    seed: A Python integer. Used to create random seeds. See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.
    dtype: The data type. Only floating point types are supported.

  Returns:
    An initializer that generates tensors with a normal distribution.

  Raises:
    ValueError: if `dtype` is not a floating point type.
  """
  def _initializer(shape, dtype=_assert_float_dtype(dtype),
                   partition_info=None):
    return random_ops.random_normal(shape, mean, stddev, dtype, seed=seed)
  return _initializer 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:init_ops.py

示例8: _sample_n

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _sample_n(self, n, seed=None):
    # Recall _assert_valid_mu ensures mu and self._cov have same batch shape.
    shape = array_ops.concat(0, [self._cov.vector_shape(), [n]])
    white_samples = random_ops.random_normal(shape=shape,
                                             mean=0.,
                                             stddev=1.,
                                             dtype=self.dtype,
                                             seed=seed)

    correlated_samples = self._cov.sqrt_matmul(white_samples)

    # Move the last dimension to the front
    perm = array_ops.concat(0, (
        array_ops.pack([array_ops.rank(correlated_samples) - 1]),
        math_ops.range(0, array_ops.rank(correlated_samples) - 1)))

    # TODO(ebrevdo): Once we get a proper tensor contraction op,
    # perform the inner product using that instead of batch_matmul
    # and this slow transpose can go away!
    correlated_samples = array_ops.transpose(correlated_samples, perm)
    samples = correlated_samples + self.mu
    return samples 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:mvn.py

示例9: random_normal

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
  """Returns a tensor with normal distribution of values.

  Arguments:
      shape: A tuple of integers, the shape of tensor to create.
      mean: A float, mean of the normal distribution to draw samples.
      stddev: A float, standard deviation of the normal distribution
          to draw samples.
      dtype: String, dtype of returned tensor.
      seed: Integer, random seed.

  Returns:
      A tensor.
  """
  if dtype is None:
    dtype = floatx()
  if seed is None:
    seed = np.random.randint(10e6)
  return random_ops.random_normal(
      shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:backend.py

示例10: _sample_n

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _sample_n(self, n, seed=None):
    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
    sampled = random_ops.random_normal(
        shape=shape, mean=0., stddev=1., dtype=self.loc.dtype, seed=seed)
    return sampled * self.scale + self.loc 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:7,代碼來源:normal.py

示例11: __call__

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    return random_ops.random_normal(shape, self.mean, self.stddev,
                                    dtype, seed=self.seed) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:7,代碼來源:init_ops.py

示例12: _create_factors

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def _create_factors(cls, rows, cols, num_shards, init, name):
    """Helper function to create row and column factors."""
    if callable(init):
      init = init()
    if isinstance(init, list):
      assert len(init) == num_shards
    elif isinstance(init, str) and init == "random":
      pass
    elif num_shards == 1:
      init = [init]
    sharded_matrix = []
    sizes = cls._shard_sizes(rows, num_shards)
    assert len(sizes) == num_shards

    def make_initializer(i, size):

      def initializer():
        if init == "random":
          return random_ops.random_normal([size, cols])
        else:
          return init[i]

      return initializer

    for i, size in enumerate(sizes):
      var_name = "%s_shard_%d" % (name, i)
      var_init = make_initializer(i, size)
      sharded_matrix.append(
          variable_scope.variable(
              var_init, dtype=dtypes.float32, name=var_name))

    return sharded_matrix 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:factorization_ops.py

示例13: random_tril_matrix

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def random_tril_matrix(shape,
                       dtype,
                       force_well_conditioned=False,
                       remove_upper=True):
  """[batch] lower triangular matrix.

  Args:
    shape:  `TensorShape` or Python `list`.  Shape of the returned matrix.
    dtype:  `TensorFlow` `dtype` or Python dtype
    force_well_conditioned:  Python `bool`. If `True`, returned matrix will have
      eigenvalues with modulus in `(1, 2)`.  Otherwise, eigenvalues are unit
      normal random variables.
    remove_upper:  Python `bool`.
      If `True`, zero out the strictly upper triangle.
      If `False`, the lower triangle of returned matrix will have desired
      properties, but will not not have the strictly upper triangle zero'd out.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  with ops.name_scope("random_tril_matrix"):
    # Totally random matrix.  Has no nice properties.
    tril = random_normal(shape, dtype=dtype)
    if remove_upper:
      tril = array_ops.matrix_band_part(tril, -1, 0)

    # Create a diagonal with entries having modulus in [1, 2].
    if force_well_conditioned:
      maxval = ops.convert_to_tensor(np.sqrt(2.), dtype=dtype.real_dtype)
      diag = random_sign_uniform(
          shape[:-1], dtype=dtype, minval=1., maxval=maxval)
      tril = array_ops.matrix_set_diag(tril, diag)

    return tril 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:linear_operator_test_util.py

示例14: random_normal

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def random_normal(shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, seed=None):
  """Tensor with (possibly complex) Gaussian entries.

  Samples are distributed like

  ```
  N(mean, stddev^2), if dtype is real,
  X + iY,  where X, Y ~ N(mean, stddev^2) if dtype is complex.
  ```

  Args:
    shape:  `TensorShape` or Python list.  Shape of the returned tensor.
    mean:  `Tensor` giving mean of normal to sample from.
    stddev:  `Tensor` giving stdev of normal to sample from.
    dtype:  `TensorFlow` `dtype` or numpy dtype
    seed:  Python integer seed for the RNG.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)

  with ops.name_scope("random_normal"):
    samples = random_ops.random_normal(
        shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
    if dtype.is_complex:
      if seed is not None:
        seed += 1234
      more_samples = random_ops.random_normal(
          shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
      samples = math_ops.complex(samples, more_samples)
    return samples 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:linear_operator_test_util.py

示例15: testOneThread

# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_normal [as 別名]
def testOneThread(self):
    with self.test_session() as sess:
      batch_size = 10
      image_size = 32
      num_batches = 5

      zero64 = constant_op.constant(0, dtype=dtypes.int64)

      examples = variables.Variable(zero64)
      counter = examples.count_up_to(num_batches * batch_size)
      image = random_ops.random_normal(
          [image_size, image_size, 3], dtype=dtypes.float32, name='images')
      label = random_ops.random_uniform(
          [1], 0, 10, dtype=dtypes.int32, name='labels')

      batches = input_lib.batch(
          [counter, image, label], batch_size=batch_size, num_threads=1)

      batches = prefetch_queue.prefetch_queue(batches).dequeue()

      variables.global_variables_initializer().run()
      threads = queue_runner_impl.start_queue_runners()

      for i in range(num_batches):
        results = sess.run(batches)
        self.assertAllEqual(results[0],
                            np.arange(i * batch_size, (i + 1) * batch_size))
        self.assertEquals(results[1].shape,
                          (batch_size, image_size, image_size, 3))
        self.assertEquals(results[2].shape, (batch_size, 1))

      # Reached the limit.
      with self.assertRaises(errors_impl.OutOfRangeError):
        sess.run(batches)
      for thread in threads:
        thread.join() 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:38,代碼來源:prefetch_queue_test.py


注:本文中的tensorflow.python.ops.random_ops.random_normal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。