本文整理匯總了Python中tensorflow.python.ops.random_ops.random_gamma方法的典型用法代碼示例。如果您正苦於以下問題:Python random_ops.random_gamma方法的具體用法?Python random_ops.random_gamma怎麽用?Python random_ops.random_gamma使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.random_ops
的用法示例。
在下文中一共展示了random_ops.random_gamma方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
k = self.event_shape_tensor()[0]
unnormalized_logits = array_ops.reshape(
math_ops.log(random_ops.random_gamma(
shape=[n],
alpha=self.concentration,
dtype=self.dtype,
seed=seed)),
shape=[-1, k])
draws = random_ops.multinomial(
logits=unnormalized_logits,
num_samples=n_draws,
seed=distribution_util.gen_new_seed(seed, salt="dirichlet_multinomial"))
x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k), -2)
final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
return array_ops.reshape(x, final_shape)
示例2: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
expanded_concentration1 = array_ops.ones_like(
self.total_concentration, dtype=self.dtype) * self.concentration1
expanded_concentration0 = array_ops.ones_like(
self.total_concentration, dtype=self.dtype) * self.concentration0
gamma1_sample = random_ops.random_gamma(
shape=[n],
alpha=expanded_concentration1,
dtype=self.dtype,
seed=seed)
gamma2_sample = random_ops.random_gamma(
shape=[n],
alpha=expanded_concentration0,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, "beta"))
beta_sample = gamma1_sample / (gamma1_sample + gamma2_sample)
return beta_sample
示例3: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
# The sampling method comes from the fact that if:
# X ~ Normal(0, 1)
# Z ~ Chi2(df)
# Y = X / sqrt(Z / df)
# then:
# Y ~ StudentT(df).
shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
df = self.df * array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)
gamma_sample = random_ops.random_gamma(
[n],
0.5 * df,
beta=0.5,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, salt="student_t"))
samples = normal_sample * math_ops.rsqrt(gamma_sample / df)
return samples * self.scale + self.loc # Abs(scale) not wanted.
示例4: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
# Here we use the fact that if:
# lam ~ Gamma(concentration=total_count, rate=(1-probs)/probs)
# then X ~ Poisson(lam) is Negative Binomially distributed.
rate = random_ops.random_gamma(
shape=[n],
alpha=self.total_count,
beta=math_ops.exp(-self.logits),
dtype=self.dtype,
seed=seed)
return random_ops.random_poisson(
rate,
shape=[],
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, "negative_binom"))
示例5: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
# The sampling method comes from the fact that if:
# X ~ Normal(0, 1)
# Z ~ Chi2(df)
# Y = X / sqrt(Z / df)
# then:
# Y ~ StudentT(df).
shape = array_ops.concat([[n], self.batch_shape()], 0)
normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
df = self.df * array_ops.ones(self.batch_shape(), dtype=self.dtype)
gamma_sample = random_ops.random_gamma(
[n],
0.5 * df,
beta=0.5,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, salt="student_t"))
samples = normal_sample / math_ops.sqrt(gamma_sample / df)
return samples * self.sigma + self.mu # Abs(sigma) not wanted.
示例6: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
k = self.event_shape_tensor()[0]
unnormalized_logits = array_ops.reshape(
math_ops.log(random_ops.random_gamma(
shape=[n],
alpha=self.concentration,
dtype=self.dtype,
seed=seed)),
shape=[-1, k])
draws = random_ops.multinomial(
logits=unnormalized_logits,
num_samples=n_draws,
seed=distribution_util.gen_new_seed(seed, salt="dirichlet_multinomial"))
x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k), -2)
final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
x = array_ops.reshape(x, final_shape)
return math_ops.cast(x, self.dtype)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:20,代碼來源:dirichlet_multinomial.py
示例7: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
return random_ops.random_gamma(
shape=[n],
alpha=self.concentration,
beta=self.rate,
dtype=self.dtype,
seed=seed)
示例8: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
gamma_sample = random_ops.random_gamma(
shape=[n],
alpha=self.concentration,
dtype=self.dtype,
seed=seed)
return gamma_sample / math_ops.reduce_sum(gamma_sample, -1, keep_dims=True)
示例9: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
"""See the documentation for tf.random_gamma for more details."""
return random_ops.random_gamma([n],
self.alpha,
beta=self.beta,
dtype=self.dtype,
seed=seed)
示例10: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
"""See the documentation for tf.random_gamma for more details."""
return 1. / random_ops.random_gamma([n], self.alpha, beta=self.beta,
dtype=self.dtype, seed=seed)
示例11: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
n_draws = math_ops.cast(self.n, dtype=dtypes.int32)
if self.n.get_shape().ndims is not None:
if self.n.get_shape().ndims != 0:
raise NotImplementedError(
"Sample only supported for scalar number of draws.")
elif self.validate_args:
is_scalar = check_ops.assert_rank(
n_draws, 0,
message="Sample only supported for scalar number of draws.")
n_draws = control_flow_ops.with_dependencies([is_scalar], n_draws)
k = self.event_shape()[0]
unnormalized_logits = array_ops.reshape(
math_ops.log(random_ops.random_gamma(
shape=[n],
alpha=self.alpha,
dtype=self.dtype,
seed=seed)),
shape=[-1, k])
draws = random_ops.multinomial(
logits=unnormalized_logits,
num_samples=n_draws,
seed=distribution_util.gen_new_seed(seed, salt="dirichlet_multinomial"))
x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k),
reduction_indices=-2)
final_shape = array_ops.concat([[n], self.batch_shape(), [k]], 0)
return array_ops.reshape(x, final_shape)
示例12: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
a = array_ops.ones_like(self.a_b_sum, dtype=self.dtype) * self.a
b = array_ops.ones_like(self.a_b_sum, dtype=self.dtype) * self.b
gamma1_sample = random_ops.random_gamma(
[n,], a, dtype=self.dtype, seed=seed)
gamma2_sample = random_ops.random_gamma(
[n,], b, dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, "beta"))
beta_sample = gamma1_sample / (gamma1_sample + gamma2_sample)
return beta_sample
示例13: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
# The sampling method comes from the well known fact that if X ~ Normal(0,
# 1), and Z ~ Chi2(df), then X / sqrt(Z / df) ~ StudentT(df).
shape = array_ops.concat(0, ([n], self.batch_shape()))
normal_sample = random_ops.random_normal(
shape, dtype=self.dtype, seed=seed)
half = constant_op.constant(0.5, self.dtype)
df = self.df * array_ops.ones(self.batch_shape(), dtype=self.dtype)
gamma_sample = random_ops.random_gamma(
[n,], half * df, beta=half, dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, salt="student_t"))
samples = normal_sample / math_ops.sqrt(gamma_sample / df)
return samples * self.sigma + self.mu
示例14: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed=None):
gamma_sample = random_ops.random_gamma(
[n,], self.alpha, dtype=self.dtype, seed=seed)
return gamma_sample / math_ops.reduce_sum(
gamma_sample, reduction_indices=[-1], keep_dims=True)
示例15: _sample_n
# 需要導入模塊: from tensorflow.python.ops import random_ops [as 別名]
# 或者: from tensorflow.python.ops.random_ops import random_gamma [as 別名]
def _sample_n(self, n, seed):
batch_shape = self.batch_shape_tensor()
event_shape = self.event_shape_tensor()
batch_ndims = array_ops.shape(batch_shape)[0]
ndims = batch_ndims + 3 # sample_ndims=1, event_ndims=2
shape = array_ops.concat([[n], batch_shape, event_shape], 0)
# Complexity: O(nbk**2)
x = random_ops.random_normal(shape=shape,
mean=0.,
stddev=1.,
dtype=self.dtype,
seed=seed)
# Complexity: O(nbk)
# This parametrization is equivalent to Chi2, i.e.,
# ChiSquared(k) == Gamma(alpha=k/2, beta=1/2)
g = random_ops.random_gamma(shape=[n],
alpha=self._multi_gamma_sequence(
0.5 * self.df, self.dimension),
beta=0.5,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(
seed, "wishart"))
# Complexity: O(nbk**2)
x = array_ops.matrix_band_part(x, -1, 0) # Tri-lower.
# Complexity: O(nbk)
x = array_ops.matrix_set_diag(x, math_ops.sqrt(g))
# Make batch-op ready.
# Complexity: O(nbk**2)
perm = array_ops.concat([math_ops.range(1, ndims), [0]], 0)
x = array_ops.transpose(x, perm)
shape = array_ops.concat([batch_shape, [event_shape[0]], [-1]], 0)
x = array_ops.reshape(x, shape)
# Complexity: O(nbM) where M is the complexity of the operator solving a
# vector system. E.g., for OperatorPDDiag, each matmul is O(k**2), so
# this complexity is O(nbk**2). For OperatorPDCholesky, each matmul is
# O(k^3) so this step has complexity O(nbk^3).
x = self.scale_operator_pd.sqrt_matmul(x)
# Undo make batch-op ready.
# Complexity: O(nbk**2)
shape = array_ops.concat([batch_shape, event_shape, [n]], 0)
x = array_ops.reshape(x, shape)
perm = array_ops.concat([[ndims - 1], math_ops.range(0, ndims - 1)], 0)
x = array_ops.transpose(x, perm)
if not self.cholesky_input_output_matrices:
# Complexity: O(nbk^3)
x = math_ops.matmul(x, x, adjoint_b=True)
return x