本文整理匯總了Python中tensorflow.python.ops.parsing_ops.FixedLenFeature方法的典型用法代碼示例。如果您正苦於以下問題:Python parsing_ops.FixedLenFeature方法的具體用法?Python parsing_ops.FixedLenFeature怎麽用?Python parsing_ops.FixedLenFeature使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.parsing_ops
的用法示例。
在下文中一共展示了parsing_ops.FixedLenFeature方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _parse_example_spec
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def _parse_example_spec(self):
"""Returns a `tf.Example` parsing spec as dict.
It is used for get_parsing_spec for `tf.parse_example`. Returned spec is a
dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other
supported objects. Please check documentation of ${tf.parse_example} for all
supported spec objects.
Let's say a Feature column depends on raw feature ('raw') and another
`_FeatureColumn` (input_fc). One possible implementation of
_parse_example_spec is as follows:
```python
spec = {'raw': tf.FixedLenFeature(...)}
spec.update(input_fc._parse_example_spec)
return spec
```
"""
pass
示例2: make_place_holder_tensors_for_base_features
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def make_place_holder_tensors_for_base_features(feature_columns):
"""Returns placeholder tensors for inference.
Args:
feature_columns: An iterable containing all the feature columns. All items
should be instances of classes derived from _FeatureColumn.
Returns:
A dict mapping feature keys to SparseTensors (sparse columns) or
placeholder Tensors (dense columns).
"""
# Get dict mapping features to FixedLenFeature or VarLenFeature values.
dict_for_parse_example = create_feature_spec_for_parsing(feature_columns)
placeholders = {}
for column_name, column_type in dict_for_parse_example.items():
if isinstance(column_type, parsing_ops.VarLenFeature):
# Sparse placeholder for sparse tensors.
placeholders[column_name] = array_ops.sparse_placeholder(
column_type.dtype, name="Placeholder_{}".format(column_name))
else:
# Simple placeholder for dense tensors.
placeholders[column_name] = array_ops.placeholder(
column_type.dtype,
shape=(None, column_type.shape[0]),
name="Placeholder_{}".format(column_name))
return placeholders
示例3: DecodeExample
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def DecodeExample(self, serialized_example, item_handler, image_format):
"""Decodes the given serialized example with the specified item handler.
Args:
serialized_example: a serialized TF example string.
item_handler: the item handler used to decode the image.
image_format: the image format being decoded.
Returns:
the decoded image found in the serialized Example.
"""
serialized_example = array_ops.reshape(serialized_example, shape=[])
decoder = tfexample_decoder.TFExampleDecoder(
keys_to_features={
'image/encoded':
parsing_ops.FixedLenFeature(
(), dtypes.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature(
(), dtypes.string, default_value=image_format),
},
items_to_handlers={'image': item_handler})
[tf_image] = decoder.decode(serialized_example, ['image'])
return tf_image
示例4: testDecodeExampleWithFloatTensor
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def testDecodeExampleWithFloatTensor(self):
np_array = np.random.rand(2, 3, 1).astype('f')
example = example_pb2.Example(features=feature_pb2.Features(feature={
'array': self._EncodedFloatFeature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.float32)
}
items_to_handlers = {'array': tfexample_decoder.Tensor('array'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_array] = decoder.decode(serialized_example, ['array'])
self.assertAllEqual(tf_array.eval(), np_array)
示例5: testDecodeExampleWithInt64Tensor
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def testDecodeExampleWithInt64Tensor(self):
np_array = np.random.randint(1, 10, size=(2, 3, 1))
example = example_pb2.Example(features=feature_pb2.Features(feature={
'array': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.int64)
}
items_to_handlers = {'array': tfexample_decoder.Tensor('array'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_array] = decoder.decode(serialized_example, ['array'])
self.assertAllEqual(tf_array.eval(), np_array)
示例6: testDecodeExampleWithFixLenTensorWithShape
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def testDecodeExampleWithFixLenTensorWithShape(self):
np_array = np.array([[1, 2, 3], [4, 5, 6]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels':
parsing_ops.FixedLenFeature(
np_array.shape, dtype=dtypes.int64),
}
items_to_handlers = {
'labels': tfexample_decoder.Tensor(
'labels', shape=np_array.shape),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array)
示例7: DecodeExample
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def DecodeExample(self, serialized_example, item_handler, image_format):
"""Decodes the given serialized example with the specified item handler.
Args:
serialized_example: a serialized TF example string.
item_handler: the item handler used to decode the image.
image_format: the image format being decoded.
Returns:
the decoded image found in the serialized Example.
"""
serialized_example = array_ops.reshape(serialized_example, shape=[])
decoder = tfexample_decoder.TFExampleDecoder(
keys_to_features={
'image/encoded':
parsing_ops.FixedLenFeature((), tf.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature((),
tf.string,
default_value=image_format),
},
items_to_handlers={'image': item_handler})
[tf_image] = decoder.decode(serialized_example, ['image'])
return tf_image
示例8: testDecodeExampleWithFloatTensor
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def testDecodeExampleWithFloatTensor(self):
np_array = np.random.rand(2, 3, 1).astype('f')
example = tf.train.Example(
features=tf.train.Features(feature={
'array': self._EncodedFloatFeature(np_array),
}))
serialized_example = example.SerializeToString()
with self.cached_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'array': parsing_ops.FixedLenFeature(np_array.shape, tf.float32)
}
items_to_handlers = {
'array': tfexample_decoder.Tensor('array'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_array] = decoder.decode(serialized_example, ['array'])
self.assertAllEqual(tf_array.eval(), np_array)
示例9: testDecodeExampleWithInt64Tensor
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def testDecodeExampleWithInt64Tensor(self):
np_array = np.random.randint(1, 10, size=(2, 3, 1))
example = tf.train.Example(
features=tf.train.Features(feature={
'array': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.cached_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'array': parsing_ops.FixedLenFeature(np_array.shape, tf.int64)
}
items_to_handlers = {
'array': tfexample_decoder.Tensor('array'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_array] = decoder.decode(serialized_example, ['array'])
self.assertAllEqual(tf_array.eval(), np_array)
示例10: testDecodeExampleWithFixLenTensorWithShape
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def testDecodeExampleWithFixLenTensorWithShape(self):
np_array = np.array([[1, 2, 3], [4, 5, 6]])
example = tf.train.Example(
features=tf.train.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.cached_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels': parsing_ops.FixedLenFeature(np_array.shape, dtype=tf.int64),
}
items_to_handlers = {
'labels': tfexample_decoder.Tensor('labels', shape=np_array.shape),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array)
示例11: __init__
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def __init__(self, keys_to_features, items_to_handlers):
"""Constructs the decoder.
Args:
keys_to_features: a dictionary from TF-Example keys to either
tf.VarLenFeature or tf.FixedLenFeature instances. See tensorflow's
parsing_ops.py.
items_to_handlers: a dictionary from items (strings) to ItemHandler
instances. Note that the ItemHandler's are provided the keys that they
use to return the final item Tensors.
"""
self._keys_to_features = keys_to_features
self._items_to_handlers = items_to_handlers
示例12: decode
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def decode(self, serialized_example, items=None):
"""Decodes the given serialized TF-example.
Args:
serialized_example: a serialized TF-example tensor.
items: the list of items to decode. These must be a subset of the item
keys in self._items_to_handlers. If `items` is left as None, then all
of the items in self._items_to_handlers are decoded.
Returns:
the decoded items, a list of tensor.
"""
example = parsing_ops.parse_single_example(serialized_example,
self._keys_to_features)
# Reshape non-sparse elements just once:
for k in self._keys_to_features:
v = self._keys_to_features[k]
if isinstance(v, parsing_ops.FixedLenFeature):
example[k] = array_ops.reshape(example[k], v.shape)
if not items:
items = self._items_to_handlers.keys()
outputs = []
for item in items:
handler = self._items_to_handlers[item]
keys_to_tensors = {key: example[key] for key in handler.keys}
outputs.append(handler.tensors_to_item(keys_to_tensors))
return outputs
示例13: _to_feature_spec
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def _to_feature_spec(tensor, default_value=None):
if isinstance(tensor, sparse_tensor.SparseTensor):
return parsing_ops.VarLenFeature(dtype=tensor.dtype)
else:
return parsing_ops.FixedLenFeature(shape=tensor.get_shape(),
dtype=tensor.dtype,
default_value=default_value)
示例14: _get_default_value
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def _get_default_value(feature_spec):
if isinstance(feature_spec, parsing_ops.FixedLenFeature):
return feature_spec.default_value
else:
return _dtype_to_nan(feature_spec.dtype)
示例15: get_feature_spec
# 需要導入模塊: from tensorflow.python.ops import parsing_ops [as 別名]
# 或者: from tensorflow.python.ops.parsing_ops import FixedLenFeature [as 別名]
def get_feature_spec(self):
dtype = self.dtype
# Convert, because example parser only supports float32, int64 and string.
if dtype == dtypes.int32:
dtype = dtypes.int64
if dtype == dtypes.float64:
dtype = dtypes.float32
if self.is_sparse:
return parsing_ops.VarLenFeature(dtype=dtype)
return parsing_ops.FixedLenFeature(shape=self.shape[1:], dtype=dtype)