本文整理匯總了Python中tensorflow.python.ops.nn_ops.xw_plus_b方法的典型用法代碼示例。如果您正苦於以下問題:Python nn_ops.xw_plus_b方法的具體用法?Python nn_ops.xw_plus_b怎麽用?Python nn_ops.xw_plus_b使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.nn_ops
的用法示例。
在下文中一共展示了nn_ops.xw_plus_b方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _highway
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _highway(self, inp, out):
input_size = inp.get_shape().with_rank(2)[1].value
carry_weight = vs.get_variable("carry_w", [input_size, input_size])
carry_bias = vs.get_variable(
"carry_b", [input_size],
initializer=init_ops.constant_initializer(
self._carry_bias_init))
carry = math_ops.sigmoid(nn_ops.xw_plus_b(inp, carry_weight, carry_bias))
if self._couple_carry_transform_gates:
transform = 1 - carry
else:
transform_weight = vs.get_variable("transform_w",
[input_size, input_size])
transform_bias = vs.get_variable(
"transform_b", [input_size],
initializer=init_ops.constant_initializer(
-self._carry_bias_init))
transform = math_ops.sigmoid(nn_ops.xw_plus_b(inp,
transform_weight,
transform_bias))
return inp * carry + out * transform
示例2: _argmax_or_mcsearch
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _argmax_or_mcsearch(embedding, output_projection=None, update_embedding=True, mc_search=False):
def loop_function(prev, _):
if output_projection is not None:
prev = nn_ops.xw_plus_b(prev, output_projection[0], output_projection[1])
if isinstance(mc_search, bool):
prev_symbol = tf.reshape(tf.multinomial(prev, 1), [-1]) if mc_search else math_ops.argmax(prev, 1)
else:
prev_symbol = tf.cond(mc_search, lambda: tf.reshape(tf.multinomial(prev, 1), [-1]), lambda: tf.argmax(prev, 1))
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev
return loop_function
示例3: _extract_argmax_and_embed
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, output_projection=None, update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
if output_projection is not None:
prev = nn_ops.xw_plus_b(
prev, output_projection[0], output_projection[1])
prev_symbol = math_ops.argmax(prev, 1)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev
return loop_function
示例4: sequence_loss_by_mle
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def sequence_loss_by_mle(logits, targets, vocab_size, sequence_length, batch_size, output_projection=None):
#print("logits: ", np.shape(logits[0]))
#logits: [seq_len, batch_size, emb_dim]
#targets: [seq_len, batch_size] =====transpose====> [batch_size, seq_len]
# labels = tf.to_int32(tf.transpose(targets))
#targets: [seq_len, batch_size] ====reshape[-1]====> [seq_len * batch_size]
labels = tf.to_int32(tf.reshape(targets, [-1]))
if output_projection is not None:
#logits = nn_ops.xw_plus_b(logits, output_projection[0], output_projection[1])
logits = [tf.matmul(logit, output_projection[0]) + output_projection[1] for logit in logits]
reshape_logits = tf.reshape(logits, [-1, vocab_size]) #[seq_len * batch_size, vocab_size]
prediction = tf.clip_by_value(reshape_logits, 1e-20, 1.0)
pretrain_loss = -tf.reduce_sum(
# [seq_len * batch_size , vocab_size]
tf.one_hot(labels, vocab_size, 1.0, 0.0) * tf.log(prediction)
) / (sequence_length * batch_size)
return pretrain_loss
示例5: _extract_argmax_and_embed
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
if output_projection is not None:
prev = nn_ops.xw_plus_b(
prev, output_projection[0], output_projection[1])
prev_symbol = math_ops.argmax(prev, 1)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev
return loop_function
示例6: sequence_softmax
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def sequence_softmax(inputs, noutput, scope=None, name=None, linear_name=None):
"""Run a softmax layer over all the time steps of an input sequence.
Args:
inputs: (length, batch_size, depth) tensor
noutput: output depth
scope: optional scope name
name: optional name for output tensor
linear_name: name for linear (pre-softmax) output
Returns:
A tensor of size (length, batch_size, noutput).
"""
length, _, ninputs = _shape(inputs)
inputs_u = array_ops.unstack(inputs)
output_u = []
with variable_scope.variable_scope(scope, "SequenceSoftmax", [inputs]):
initial_w = random_ops.truncated_normal([0 + ninputs, noutput], stddev=0.1)
initial_b = constant_op.constant(0.1, shape=[noutput])
w = variables.model_variable("weights", initializer=initial_w)
b = variables.model_variable("biases", initializer=initial_b)
for i in xrange(length):
with variable_scope.variable_scope(scope, "SequenceSoftmaxStep",
[inputs_u[i]]):
# TODO(tmb) consider using slim.fully_connected(...,
# activation_fn=tf.nn.softmax)
linear = nn_ops.xw_plus_b(inputs_u[i], w, b, name=linear_name)
output = nn_ops.softmax(linear)
output_u += [output]
outputs = array_ops.stack(output_u, name=name)
return outputs
示例7: _extract_argmax_and_embed
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding,
output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
if output_projection is not None:
prev = nn_ops.xw_plus_b(prev, output_projection[0], output_projection[1])
prev_symbol = math_ops.argmax(prev, 1)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev
return loop_function
示例8: _extract_argmax_and_embed
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(self,embedding, output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
if output_projection is not None:
prev = nn_ops.xw_plus_b(
prev, output_projection[0], output_projection[1])
prev_symbol = math_ops.argmax(prev, 1) + tf.to_int64(self.batch_index_bias)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = tf.stop_gradient(emb_prev)
return emb_prev
return loop_function
開發者ID:QingyaoAi,項目名稱:Deep-Listwise-Context-Model-for-Ranking-Refinement,代碼行數:30,代碼來源:RankLSTM_model.py
示例9: _extract_argmax_and_embed
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
# decoder outputs thus far.
if output_projection is not None:
prev = nn_ops.xw_plus_b(
prev, output_projection[0], output_projection[1])
prev_symbol = math_ops.argmax(prev, 1)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev, prev_symbol
return loop_function
示例10: project_and_apply_input_bias
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def project_and_apply_input_bias(logits, output_projection, input_bias):
if output_projection is not None:
logits = nn_ops.xw_plus_b(
logits, output_projection[0], output_projection[1])
# Apply softmax to ensure all tokens have a positive value.
probs = tf.nn.softmax(logits)
# Apply input bias, which is a mask of shape [batch, vocab len]
# where each token from the input in addition to all "corrective"
# tokens are set to 1.0.
return tf.mul(probs, input_bias)
示例11: _extract_argmax_and_embed
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
if output_projection is not None:
prev = nn_ops.xw_plus_b(
prev, output_projection[0], output_projection[1])
prev_symbol = math_ops.argmax(prev, 1)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev
return loop_function
示例12: _extract_argmax_and_embed
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(self, embedding, output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
if output_projection is not None:
prev = nn_ops.xw_plus_b(
prev, output_projection[0], output_projection[1])
prev_symbol = math_ops.argmax(
prev, 1) + tf.to_int64(self.batch_index_bias)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = tf.stop_gradient(emb_prev)
return emb_prev
return loop_function
示例13: _extract_argmax_and_embed
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, num_symbols, output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
#if output_projection is not None:
# prev = nn_ops.xw_plus_b(
# prev, output_projection[0], output_projection[1])
#prev_symbol = math_ops.argmax(prev, 1)
prev_symbol = math_ops.argmax(array_ops.split_v(prev, [2, num_symbols-2], 1)[1], 1) + 2
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev
return loop_function
示例14: _extract_beam_search
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_beam_search(embedding, beam_size, num_symbols, embedding_size, output_projection=None, update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, i, log_beam_probs, beam_path, beam_symbols, beam_results):
#if output_projection is not None:
# prev = nn_ops.xw_plus_b(
# prev, output_projection[0], output_projection[1])
# prev= prev.get_shape().with_rank(2)[1]
prev = array_ops.split_v(prev, [2, num_symbols-2], 1)[1]
probs = tf.log(prev+1e-12)
if i > 1:
probs = tf.reshape(probs + log_beam_probs[-1],
[-1, beam_size * (num_symbols - 2)])
best_probs, indices = tf.nn.top_k(probs, beam_size * 2)
indices = tf.stop_gradient(tf.squeeze(tf.reshape(indices, [-1, 1])))
best_probs = tf.stop_gradient(tf.reshape(best_probs, [-1, 1]))
symbols = indices % (num_symbols - 2) + 2 # Which word in vocabulary.
beam_parent = indices // (num_symbols - 2) # Which hypothesis it came from.
partition = tf.cast(tf.cast(symbols-2, tf.bool), tf.int32)
prob_group = tf.dynamic_partition(best_probs, partition, 2)
symbols_group = tf.dynamic_partition(symbols, partition, 2)
parent_group = tf.dynamic_partition(beam_parent, partition, 2)
beam_results.append([prob_group[0], symbols_group[0], parent_group[0]])
_probs = prob_group[1][:beam_size]
_symbols = symbols_group[1][:beam_size]
_parents = parent_group[1][:beam_size]
beam_symbols.append(_symbols)
beam_path.append(_parents)
log_beam_probs.append(_probs)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, _symbols)
emb_prev = tf.reshape(emb_prev,[beam_size,embedding_size])
# emb_prev = embedding_ops.embedding_lookup(embedding, symbols)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev
return loop_function
示例15: _extract_beam_search
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_beam_search(embedding, beam_size, num_symbols, embedding_size, output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, i, log_beam_probs, beam_path, beam_symbols):
if output_projection is not None:
prev = nn_ops.xw_plus_b(
prev, output_projection[0], output_projection[1])
# prev= prev.get_shape().with_rank(2)[1]
probs = tf.log(tf.nn.softmax(prev))
if i > 1:
probs = tf.reshape(probs + log_beam_probs[-1],
[-1, beam_size * num_symbols])
best_probs, indices = tf.nn.top_k(probs, beam_size)
indices = tf.stop_gradient(tf.squeeze(tf.reshape(indices, [-1, 1])))
best_probs = tf.stop_gradient(tf.reshape(best_probs, [-1, 1]))
symbols = indices % num_symbols # Which word in vocabulary.
beam_parent = indices // num_symbols # Which hypothesis it came from.
beam_symbols.append(symbols)
beam_path.append(beam_parent)
log_beam_probs.append(best_probs)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, symbols)
emb_prev = tf.reshape(emb_prev,[beam_size,embedding_size])
# emb_prev = embedding_ops.embedding_lookup(embedding, symbols)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev
return loop_function