當前位置: 首頁>>代碼示例>>Python>>正文


Python nn_ops.xw_plus_b方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.nn_ops.xw_plus_b方法的典型用法代碼示例。如果您正苦於以下問題:Python nn_ops.xw_plus_b方法的具體用法?Python nn_ops.xw_plus_b怎麽用?Python nn_ops.xw_plus_b使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.nn_ops的用法示例。


在下文中一共展示了nn_ops.xw_plus_b方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _highway

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _highway(self, inp, out):
    input_size = inp.get_shape().with_rank(2)[1].value
    carry_weight = vs.get_variable("carry_w", [input_size, input_size])
    carry_bias = vs.get_variable(
        "carry_b", [input_size],
        initializer=init_ops.constant_initializer(
            self._carry_bias_init))
    carry = math_ops.sigmoid(nn_ops.xw_plus_b(inp, carry_weight, carry_bias))
    if self._couple_carry_transform_gates:
      transform = 1 - carry
    else:
      transform_weight = vs.get_variable("transform_w",
                                         [input_size, input_size])
      transform_bias = vs.get_variable(
          "transform_b", [input_size],
          initializer=init_ops.constant_initializer(
              -self._carry_bias_init))
      transform = math_ops.sigmoid(nn_ops.xw_plus_b(inp,
                                                    transform_weight,
                                                    transform_bias))
    return inp * carry + out * transform 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:rnn_cell.py

示例2: _argmax_or_mcsearch

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _argmax_or_mcsearch(embedding, output_projection=None, update_embedding=True, mc_search=False):
    def loop_function(prev, _):
        if output_projection is not None:
            prev = nn_ops.xw_plus_b(prev, output_projection[0], output_projection[1])


        if isinstance(mc_search, bool):
            prev_symbol = tf.reshape(tf.multinomial(prev, 1), [-1]) if mc_search else math_ops.argmax(prev, 1)
        else:
            prev_symbol = tf.cond(mc_search, lambda: tf.reshape(tf.multinomial(prev, 1), [-1]), lambda: tf.argmax(prev, 1))


        emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
        if not update_embedding:
            emb_prev = array_ops.stop_gradient(emb_prev)
        return emb_prev
    return loop_function 
開發者ID:andi611,項目名稱:Conditional-SeqGAN-Tensorflow,代碼行數:19,代碼來源:tf_seq2seq_model.py

示例3: _extract_argmax_and_embed

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, output_projection=None, update_embedding=True):
  """Get a loop_function that extracts the previous symbol and embeds it.

  Args:
    embedding: embedding tensor for symbols.
    output_projection: None or a pair (W, B). If provided, each fed previous
      output will first be multiplied by W and added B.
    update_embedding: Boolean; if False, the gradients will not propagate
      through the embeddings.

  Returns:
    A loop function.
  """
  def loop_function(prev, _):
    if output_projection is not None:
      prev = nn_ops.xw_plus_b(
          prev, output_projection[0], output_projection[1])
    prev_symbol = math_ops.argmax(prev, 1)
    # Note that gradients will not propagate through the second parameter of
    # embedding_lookup.
    emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
    if not update_embedding:
      emb_prev = array_ops.stop_gradient(emb_prev)
    return emb_prev
  return loop_function 
開發者ID:andi611,項目名稱:Conditional-SeqGAN-Tensorflow,代碼行數:27,代碼來源:tf_seq2seq_model.py

示例4: sequence_loss_by_mle

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def sequence_loss_by_mle(logits, targets, vocab_size, sequence_length, batch_size, output_projection=None):
    #print("logits: ", np.shape(logits[0]))
    #logits: [seq_len, batch_size, emb_dim]
    #targets: [seq_len, batch_size]  =====transpose====> [batch_size, seq_len]
    # labels = tf.to_int32(tf.transpose(targets))
    #targets: [seq_len, batch_size] ====reshape[-1]====> [seq_len * batch_size]
    labels = tf.to_int32(tf.reshape(targets, [-1]))

    if output_projection is not None:
      #logits = nn_ops.xw_plus_b(logits, output_projection[0], output_projection[1])
      logits = [tf.matmul(logit, output_projection[0]) + output_projection[1] for logit in logits]

    reshape_logits = tf.reshape(logits, [-1, vocab_size]) #[seq_len * batch_size, vocab_size]

    prediction = tf.clip_by_value(reshape_logits, 1e-20, 1.0)

    pretrain_loss = -tf.reduce_sum(
        # [seq_len * batch_size , vocab_size]
        tf.one_hot(labels, vocab_size, 1.0, 0.0) * tf.log(prediction)
    ) / (sequence_length * batch_size)
    return pretrain_loss 
開發者ID:andi611,項目名稱:Conditional-SeqGAN-Tensorflow,代碼行數:23,代碼來源:tf_seq2seq_model.py

示例5: _extract_argmax_and_embed

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, output_projection=None,
                              update_embedding=True):
  """Get a loop_function that extracts the previous symbol and embeds it.
  Args:
    embedding: embedding tensor for symbols.
    output_projection: None or a pair (W, B). If provided, each fed previous
      output will first be multiplied by W and added B.
    update_embedding: Boolean; if False, the gradients will not propagate
      through the embeddings.
  Returns:
    A loop function.
  """
  def loop_function(prev, _):
    if output_projection is not None:
      prev = nn_ops.xw_plus_b(
          prev, output_projection[0], output_projection[1])
    prev_symbol = math_ops.argmax(prev, 1)
    # Note that gradients will not propagate through the second parameter of
    # embedding_lookup.
    emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
    if not update_embedding:
      emb_prev = array_ops.stop_gradient(emb_prev)
    return emb_prev
  return loop_function 
開發者ID:pbhatia243,項目名稱:Neural_Conversation_Models,代碼行數:26,代碼來源:my_seq2seq.py

示例6: sequence_softmax

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def sequence_softmax(inputs, noutput, scope=None, name=None, linear_name=None):
  """Run a softmax layer over all the time steps of an input sequence.

  Args:
    inputs: (length, batch_size, depth) tensor
    noutput: output depth
    scope: optional scope name
    name: optional name for output tensor
    linear_name: name for linear (pre-softmax) output

  Returns:
    A tensor of size (length, batch_size, noutput).

  """
  length, _, ninputs = _shape(inputs)
  inputs_u = array_ops.unstack(inputs)
  output_u = []
  with variable_scope.variable_scope(scope, "SequenceSoftmax", [inputs]):
    initial_w = random_ops.truncated_normal([0 + ninputs, noutput], stddev=0.1)
    initial_b = constant_op.constant(0.1, shape=[noutput])
    w = variables.model_variable("weights", initializer=initial_w)
    b = variables.model_variable("biases", initializer=initial_b)
    for i in xrange(length):
      with variable_scope.variable_scope(scope, "SequenceSoftmaxStep",
                                         [inputs_u[i]]):
        # TODO(tmb) consider using slim.fully_connected(...,
        # activation_fn=tf.nn.softmax)
        linear = nn_ops.xw_plus_b(inputs_u[i], w, b, name=linear_name)
        output = nn_ops.softmax(linear)
        output_u += [output]
    outputs = array_ops.stack(output_u, name=name)
  return outputs 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:lstm1d.py

示例7: _extract_argmax_and_embed

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding,
                              output_projection=None,
                              update_embedding=True):
  """Get a loop_function that extracts the previous symbol and embeds it.

  Args:
    embedding: embedding tensor for symbols.
    output_projection: None or a pair (W, B). If provided, each fed previous
      output will first be multiplied by W and added B.
    update_embedding: Boolean; if False, the gradients will not propagate
      through the embeddings.

  Returns:
    A loop function.
  """

  def loop_function(prev, _):
    if output_projection is not None:
      prev = nn_ops.xw_plus_b(prev, output_projection[0], output_projection[1])
    prev_symbol = math_ops.argmax(prev, 1)
    # Note that gradients will not propagate through the second parameter of
    # embedding_lookup.
    emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
    if not update_embedding:
      emb_prev = array_ops.stop_gradient(emb_prev)
    return emb_prev

  return loop_function 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:seq2seq.py

示例8: _extract_argmax_and_embed

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(self,embedding, output_projection=None,
								 update_embedding=True):
		"""Get a loop_function that extracts the previous symbol and embeds it.

		Args:
		embedding: embedding tensor for symbols.
		output_projection: None or a pair (W, B). If provided, each fed previous
			output will first be multiplied by W and added B.
		update_embedding: Boolean; if False, the gradients will not propagate
			through the embeddings.

		Returns:
		A loop function.
		"""

		def loop_function(prev, _):
			if output_projection is not None:
				prev = nn_ops.xw_plus_b(
					prev, output_projection[0], output_projection[1])
			prev_symbol = math_ops.argmax(prev, 1) + tf.to_int64(self.batch_index_bias)
			# Note that gradients will not propagate through the second parameter of
			# embedding_lookup.
			emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
			if not update_embedding:
				emb_prev = tf.stop_gradient(emb_prev)
			return emb_prev

		return loop_function 
開發者ID:QingyaoAi,項目名稱:Deep-Listwise-Context-Model-for-Ranking-Refinement,代碼行數:30,代碼來源:RankLSTM_model.py

示例9: _extract_argmax_and_embed

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, output_projection=None,
                              update_embedding=True):
    """Get a loop_function that extracts the previous symbol and embeds it.

    Args:
      embedding: embedding tensor for symbols.
      output_projection: None or a pair (W, B). If provided, each fed previous
        output will first be multiplied by W and added B.
      update_embedding: Boolean; if False, the gradients will not propagate
        through the embeddings.

    Returns:
      A loop function.
    """
    def loop_function(prev, _):
        # decoder outputs thus far.
        if output_projection is not None:
            prev = nn_ops.xw_plus_b(
                prev, output_projection[0], output_projection[1])
        prev_symbol = math_ops.argmax(prev, 1)
        # Note that gradients will not propagate through the second parameter of
        # embedding_lookup.
        emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
        if not update_embedding:
            emb_prev = array_ops.stop_gradient(emb_prev)
        return emb_prev, prev_symbol
    return loop_function 
開發者ID:atpaino,項目名稱:deep-text-corrector,代碼行數:29,代碼來源:seq2seq.py

示例10: project_and_apply_input_bias

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def project_and_apply_input_bias(logits, output_projection, input_bias):
    if output_projection is not None:
        logits = nn_ops.xw_plus_b(
            logits, output_projection[0], output_projection[1])

    # Apply softmax to ensure all tokens have a positive value.
    probs = tf.nn.softmax(logits)

    # Apply input bias, which is a mask of shape [batch, vocab len]
    # where each token from the input in addition to all "corrective"
    # tokens are set to 1.0.
    return tf.mul(probs, input_bias) 
開發者ID:atpaino,項目名稱:deep-text-corrector,代碼行數:14,代碼來源:text_corrector_models.py

示例11: _extract_argmax_and_embed

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, output_projection=None,
                              update_embedding=True):
  """Get a loop_function that extracts the previous symbol and embeds it.

  Args:
    embedding: embedding tensor for symbols.
    output_projection: None or a pair (W, B). If provided, each fed previous
      output will first be multiplied by W and added B.
    update_embedding: Boolean; if False, the gradients will not propagate
      through the embeddings.

  Returns:
    A loop function.
  """
  def loop_function(prev, _):
    if output_projection is not None:
      prev = nn_ops.xw_plus_b(
          prev, output_projection[0], output_projection[1])
    prev_symbol = math_ops.argmax(prev, 1)
    # Note that gradients will not propagate through the second parameter of
    # embedding_lookup.
    emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
    if not update_embedding:
      emb_prev = array_ops.stop_gradient(emb_prev)
    return emb_prev
  return loop_function 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:seq2seq.py

示例12: _extract_argmax_and_embed

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(self, embedding, output_projection=None,
                                  update_embedding=True):
        """Get a loop_function that extracts the previous symbol and embeds it.

        Args:
        embedding: embedding tensor for symbols.
        output_projection: None or a pair (W, B). If provided, each fed previous
            output will first be multiplied by W and added B.
        update_embedding: Boolean; if False, the gradients will not propagate
            through the embeddings.

        Returns:
        A loop function.
        """

        def loop_function(prev, _):
            if output_projection is not None:
                prev = nn_ops.xw_plus_b(
                    prev, output_projection[0], output_projection[1])
            prev_symbol = math_ops.argmax(
                prev, 1) + tf.to_int64(self.batch_index_bias)
            # Note that gradients will not propagate through the second parameter of
            # embedding_lookup.
            emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
            if not update_embedding:
                emb_prev = tf.stop_gradient(emb_prev)
            return emb_prev

        return loop_function 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:31,代碼來源:DLCM.py

示例13: _extract_argmax_and_embed

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_argmax_and_embed(embedding, num_symbols, output_projection=None,
                                                            update_embedding=True):
    """Get a loop_function that extracts the previous symbol and embeds it.

    Args:
        embedding: embedding tensor for symbols.
        output_projection: None or a pair (W, B). If provided, each fed previous
            output will first be multiplied by W and added B.
        update_embedding: Boolean; if False, the gradients will not propagate
            through the embeddings.

    Returns:
        A loop function.
    """
    def loop_function(prev, _):
        #if output_projection is not None:
        #    prev = nn_ops.xw_plus_b(
        #            prev, output_projection[0], output_projection[1])
        #prev_symbol = math_ops.argmax(prev, 1)
        prev_symbol = math_ops.argmax(array_ops.split_v(prev, [2, num_symbols-2], 1)[1], 1) + 2
        # Note that gradients will not propagate through the second parameter of
        # embedding_lookup.
        emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
        if not update_embedding:
            emb_prev = array_ops.stop_gradient(emb_prev)
        return emb_prev
    return loop_function 
開發者ID:thu-coai,項目名稱:ecm,代碼行數:29,代碼來源:seq2seq.py

示例14: _extract_beam_search

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_beam_search(embedding, beam_size, num_symbols, embedding_size, output_projection=None, update_embedding=True):
    """Get a loop_function that extracts the previous symbol and embeds it.
    Args:
        embedding: embedding tensor for symbols.
        output_projection: None or a pair (W, B). If provided, each fed previous
            output will first be multiplied by W and added B.
        update_embedding: Boolean; if False, the gradients will not propagate
            through the embeddings.
    Returns:
        A loop function.
    """
    def loop_function(prev, i, log_beam_probs, beam_path, beam_symbols, beam_results):
        #if output_projection is not None:
        #    prev = nn_ops.xw_plus_b(
        #            prev, output_projection[0], output_projection[1])
        # prev= prev.get_shape().with_rank(2)[1]
        prev = array_ops.split_v(prev, [2, num_symbols-2], 1)[1]
        probs = tf.log(prev+1e-12)

        if i > 1:

            probs = tf.reshape(probs + log_beam_probs[-1],
                                                             [-1, beam_size * (num_symbols - 2)])

        best_probs, indices = tf.nn.top_k(probs, beam_size * 2)
        indices = tf.stop_gradient(tf.squeeze(tf.reshape(indices, [-1, 1])))
        best_probs = tf.stop_gradient(tf.reshape(best_probs, [-1, 1]))

        symbols = indices % (num_symbols - 2) + 2 # Which word in vocabulary.

        beam_parent = indices // (num_symbols - 2) # Which hypothesis it came from.

        partition = tf.cast(tf.cast(symbols-2, tf.bool), tf.int32)

        prob_group = tf.dynamic_partition(best_probs, partition, 2)
        symbols_group = tf.dynamic_partition(symbols, partition, 2)
        parent_group = tf.dynamic_partition(beam_parent, partition, 2)
        
        beam_results.append([prob_group[0], symbols_group[0], parent_group[0]])

        _probs = prob_group[1][:beam_size]
        _symbols = symbols_group[1][:beam_size]
        _parents = parent_group[1][:beam_size]

        beam_symbols.append(_symbols)
        beam_path.append(_parents)
        log_beam_probs.append(_probs)

        # Note that gradients will not propagate through the second parameter of
        # embedding_lookup.

        emb_prev = embedding_ops.embedding_lookup(embedding, _symbols)
        emb_prev    = tf.reshape(emb_prev,[beam_size,embedding_size])
        # emb_prev = embedding_ops.embedding_lookup(embedding, symbols)
        if not update_embedding:
            emb_prev = array_ops.stop_gradient(emb_prev)
        return emb_prev
    return loop_function 
開發者ID:thu-coai,項目名稱:ecm,代碼行數:60,代碼來源:seq2seq.py

示例15: _extract_beam_search

# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import xw_plus_b [as 別名]
def _extract_beam_search(embedding, beam_size, num_symbols, embedding_size,  output_projection=None,
                              update_embedding=True):
  """Get a loop_function that extracts the previous symbol and embeds it.

  Args:
    embedding: embedding tensor for symbols.
    output_projection: None or a pair (W, B). If provided, each fed previous
      output will first be multiplied by W and added B.
    update_embedding: Boolean; if False, the gradients will not propagate
      through the embeddings.

  Returns:
    A loop function.
  """
  def loop_function(prev, i, log_beam_probs, beam_path, beam_symbols):
    if output_projection is not None:
      prev = nn_ops.xw_plus_b(
          prev, output_projection[0], output_projection[1])
    # prev= prev.get_shape().with_rank(2)[1]

    probs  = tf.log(tf.nn.softmax(prev))

    if i > 1:

        probs = tf.reshape(probs + log_beam_probs[-1],
                               [-1, beam_size * num_symbols])

    best_probs, indices = tf.nn.top_k(probs, beam_size)
    indices = tf.stop_gradient(tf.squeeze(tf.reshape(indices, [-1, 1])))
    best_probs = tf.stop_gradient(tf.reshape(best_probs, [-1, 1]))

    symbols = indices % num_symbols # Which word in vocabulary.
    beam_parent = indices // num_symbols # Which hypothesis it came from.


    beam_symbols.append(symbols)
    beam_path.append(beam_parent)
    log_beam_probs.append(best_probs)

    # Note that gradients will not propagate through the second parameter of
    # embedding_lookup.

    emb_prev = embedding_ops.embedding_lookup(embedding, symbols)
    emb_prev  = tf.reshape(emb_prev,[beam_size,embedding_size])
    # emb_prev = embedding_ops.embedding_lookup(embedding, symbols)
    if not update_embedding:
      emb_prev = array_ops.stop_gradient(emb_prev)
    return emb_prev
  return loop_function 
開發者ID:pbhatia243,項目名稱:Neural_Conversation_Models,代碼行數:51,代碼來源:my_seq2seq.py


注:本文中的tensorflow.python.ops.nn_ops.xw_plus_b方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。