本文整理匯總了Python中tensorflow.python.ops.nn_ops.sparse_softmax_cross_entropy_with_logits方法的典型用法代碼示例。如果您正苦於以下問題:Python nn_ops.sparse_softmax_cross_entropy_with_logits方法的具體用法?Python nn_ops.sparse_softmax_cross_entropy_with_logits怎麽用?Python nn_ops.sparse_softmax_cross_entropy_with_logits使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.nn_ops
的用法示例。
在下文中一共展示了nn_ops.sparse_softmax_cross_entropy_with_logits方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: loss
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def loss(self, data, labels):
"""The loss to minimize while training."""
if self.is_regression:
diff = self.training_inference_graph(data) - math_ops.to_float(labels)
mean_squared_error = math_ops.reduce_mean(diff * diff)
root_mean_squared_error = math_ops.sqrt(mean_squared_error, name="loss")
loss = root_mean_squared_error
else:
loss = math_ops.reduce_mean(
nn_ops.sparse_softmax_cross_entropy_with_logits(
labels=array_ops.squeeze(math_ops.to_int32(labels)),
logits=self.training_inference_graph(data)),
name="loss")
if self.regularizer:
loss += layers.apply_regularization(self.regularizer,
variables.trainable_variables())
return loss
示例2: test_binary_ops
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def test_binary_ops(self):
ops = [
('sigmoid_cross_entropy_with_logits',
nn_impl.sigmoid_cross_entropy_with_logits,
nn.sigmoid_cross_entropy_with_logits),
('softmax_cross_entropy_with_logits',
nn_ops.softmax_cross_entropy_with_logits,
nn.softmax_cross_entropy_with_logits),
('sparse_softmax_cross_entropy_with_logits',
nn_ops.sparse_softmax_cross_entropy_with_logits,
nn.sparse_softmax_cross_entropy_with_logits),
]
for op_name, tf_op, lt_op in ops:
golden_tensor = tf_op(self.original_lt.tensor, self.other_lt.tensor)
golden_lt = core.LabeledTensor(golden_tensor, self.axes)
actual_lt = lt_op(self.original_lt, self.other_lt)
self.assertIn(op_name, actual_lt.name)
self.assertLabeledTensorsEqual(golden_lt, actual_lt)
示例3: loss
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def loss(self, data, labels):
"""The loss to minimize while training."""
if self.is_regression:
diff = self.training_inference_graph(data) - math_ops.to_float(labels)
mean_squared_error = math_ops.reduce_mean(diff * diff)
root_mean_squared_error = math_ops.sqrt(mean_squared_error, name="loss")
loss = root_mean_squared_error
else:
loss = math_ops.reduce_mean(
nn_ops.sparse_softmax_cross_entropy_with_logits(
self.training_inference_graph(data),
array_ops.squeeze(math_ops.to_int32(labels))),
name="loss")
if self.regularizer:
loss += layers.apply_regularization(self.regularizer,
variables.trainable_variables())
return loss
示例4: _log_prob
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def _log_prob(self, k):
k = ops.convert_to_tensor(k, name="k")
if self.logits.get_shape()[:-1] == k.get_shape():
logits = self.logits
else:
logits = self.logits * array_ops.ones_like(
array_ops.expand_dims(k, -1), dtype=self.logits.dtype)
logits_shape = array_ops.shape(logits)[:-1]
k *= array_ops.ones(logits_shape, dtype=k.dtype)
k.set_shape(tensor_shape.TensorShape(logits.get_shape()[:-1]))
return -nn_ops.sparse_softmax_cross_entropy_with_logits(labels=k,
logits=logits)
示例5: _log_prob
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def _log_prob(self, k):
k = ops.convert_to_tensor(k, name="k")
if self.logits.get_shape()[:-1] == k.get_shape():
logits = self.logits
else:
logits = self.logits * array_ops.ones_like(
array_ops.expand_dims(k, -1), dtype=self.logits.dtype)
logits_shape = array_ops.shape(logits)[:-1]
k *= array_ops.ones(logits_shape, dtype=k.dtype)
k.set_shape(tensor_shape.TensorShape(logits.get_shape()[:-1]))
return -nn_ops.sparse_softmax_cross_entropy_with_logits(logits, k)
示例6: sequence_loss_by_example
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def sequence_loss_by_example(logits, targets, weights,
average_across_timesteps=True,
softmax_loss_function=None, name=None):
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.name_scope(name, "sequence_loss_by_example",
logits + targets + weights):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# TODO(irving,ebrevdo): This reshape is needed because
# sequence_loss_by_example is called with scalars sometimes, which
# violates our general scalar strictness policy.
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
logit, target)
else:
crossent = softmax_loss_function(target, logit)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
示例7: sequence_loss_by_example
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def sequence_loss_by_example(logits, targets, weights,
average_across_timesteps=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.op_scope(logits + targets + weights, name,
"sequence_loss_by_example"):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
logit, target)
else:
crossent = softmax_loss_function(logit, target)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
示例8: _log_prob
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def _log_prob(self, k):
k = ops.convert_to_tensor(k, name="k")
if self.validate_args:
k = distribution_util.embed_check_integer_casting_closed(
k, target_dtype=dtypes.int32)
k, logits = _broadcast_cat_event_and_params(
k, self.logits, base_dtype=self.dtype.base_dtype)
return -nn_ops.sparse_softmax_cross_entropy_with_logits(labels=k,
logits=logits)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:12,代碼來源:categorical.py
示例9: sequence_loss_by_example
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def sequence_loss_by_example(logits,
targets,
weights,
average_across_timesteps=True,
softmax_loss_function=None,
name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (labels, logits) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
**Note that to avoid confusion, it is required for the function to accept
named arguments.**
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.name_scope(name, "sequence_loss_by_example",
logits + targets + weights):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# TODO(irving,ebrevdo): This reshape is needed because
# sequence_loss_by_example is called with scalars sometimes, which
# violates our general scalar strictness policy.
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
labels=target, logits=logit)
else:
crossent = softmax_loss_function(labels=target, logits=logit)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
示例10: sequence_loss_by_example
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def sequence_loss_by_example(logits,
targets,
weights,
average_across_timesteps=True,
softmax_loss_function=None,
name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (labels-batch, inputs-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.name_scope(name, "sequence_loss_by_example",
logits + targets + weights):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# TODO(irving,ebrevdo): This reshape is needed because
# sequence_loss_by_example is called with scalars sometimes, which
# violates our general scalar strictness policy.
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
labels=target, logits=logit)
else:
crossent = softmax_loss_function(target, logit)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
示例11: sequence_loss_by_example
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def sequence_loss_by_example(logits, targets, weights,
average_across_timesteps=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.name_scope(name, "sequence_loss_by_example",
logits + targets + weights):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# TODO(irving,ebrevdo): This reshape is needed because
# sequence_loss_by_example is called with scalars sometimes, which
# violates our general scalar strictness policy.
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
logit, target)
else:
crossent = softmax_loss_function(logit, target)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
示例12: sequence_loss_by_example
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def sequence_loss_by_example(logits, targets, weights,
average_across_timesteps=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.name_scope(name, "sequence_loss_by_example",
logits + targets + weights):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# TODO(irving,ebrevdo): This reshape is needed because
# sequence_loss_by_example is called with scalars sometimes, which
# violates our general scalar strictness policy.
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
logit, target)
else:
crossent = softmax_loss_function(logit, target)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
示例13: sequence_loss_by_example
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def sequence_loss_by_example(logits, targets, weights, ememory,
average_across_timesteps=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.name_scope(name, "sequence_loss_by_example",
logits + targets + weights if ememory is None else logits + targets + weights + [ememory]):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# TODO(irving,ebrevdo): This reshape is needed because
# sequence_loss_by_example is called with scalars sometimes, which
# violates our general scalar strictness policy.
#target = array_ops.reshape(target, [-1])
#crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
# logit, target)
if ememory is None:
target = array_ops.reshape(target, [-1])
label = tf.one_hot(target, depth=logit.get_shape().with_rank(2)[1], dtype=tf.float32)
crossent = -tf.reduce_sum(label * tf.log(logit+1e-12), 1)
else:
golden = tf.gather(ememory, target)
golden = tf.stack([golden, 1-golden])
crossent = -tf.reduce_sum(golden * tf.log(logit+1e-12), 0)
else:
#sampled softmax not work
crossent = softmax_loss_function(logit, target)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
示例14: sequence_loss_by_example
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import sparse_softmax_cross_entropy_with_logits [as 別名]
def sequence_loss_by_example(logits, targets, weights,
average_across_timesteps=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.name_scope(name, "sequence_loss_by_example",
logits + targets + weights):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# TODO(irving,ebrevdo): This reshape is needed because
# sequence_loss_by_example is called with scalars sometimes, which
# violates our general scalar strictness policy.
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
logits=logit, labels=target)
else:
crossent = softmax_loss_function(logits=logit, labels=target)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps