本文整理匯總了Python中tensorflow.python.ops.nn_ops.l2_loss方法的典型用法代碼示例。如果您正苦於以下問題:Python nn_ops.l2_loss方法的具體用法?Python nn_ops.l2_loss怎麽用?Python nn_ops.l2_loss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.nn_ops
的用法示例。
在下文中一共展示了nn_ops.l2_loss方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_unary_ops
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import l2_loss [as 別名]
def test_unary_ops(self):
ops = [
('relu', nn_ops.relu, nn.relu),
('relu6', nn_ops.relu6, nn.relu6),
('crelu', nn_ops.crelu, nn.crelu),
('elu', nn_ops.elu, nn.elu),
('softplus', nn_ops.softplus, nn.softplus),
('l2_loss', nn_ops.l2_loss, nn.l2_loss),
('softmax', nn_ops.softmax, nn.softmax),
('log_softmax', nn_ops.log_softmax, nn.log_softmax),
]
for op_name, tf_op, lt_op in ops:
golden_tensor = tf_op(self.original_lt.tensor)
golden_lt = core.LabeledTensor(golden_tensor, self.axes)
actual_lt = lt_op(self.original_lt)
self.assertIn(op_name, actual_lt.name)
self.assertLabeledTensorsEqual(golden_lt, actual_lt)
示例2: l2norm_squared
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import l2_loss [as 別名]
def l2norm_squared(v):
return constant_op.constant(2, dtype=v.dtype.base_dtype) * nn_ops.l2_loss(v)
示例3: testVariableWithRegularizer
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import l2_loss [as 別名]
def testVariableWithRegularizer(self):
with self.cached_session():
with variable_scope.variable_scope('A'):
a = variables_lib2.variable('a', [], regularizer=nn_ops.l2_loss)
loss = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)[0]
self.assertDeviceEqual(loss.device, a.device)
示例4: testVariableWithRegularizerColocate
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import l2_loss [as 別名]
def testVariableWithRegularizerColocate(self):
with self.cached_session():
with variable_scope.variable_scope('A'):
a = variables_lib2.variable(
'a', [], device='gpu:0', regularizer=nn_ops.l2_loss)
loss = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)[0]
self.assertDeviceEqual(loss.device, a.device)
示例5: testCreateConvWithWD
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import l2_loss [as 別名]
def testCreateConvWithWD(self):
height, width = 7, 9
weight_decay = 0.01
with self.cached_session() as sess:
images = random_ops.random_uniform((5, height, width, 3), seed=1)
regularizer = regularizers.l2_regularizer(weight_decay)
layers_lib.convolution2d(
images, 32, [3, 3], weights_regularizer=regularizer)
l2_loss = nn_ops.l2_loss(variables.get_variables_by_name('weights')[0])
wd = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)[0]
self.assertEqual(wd.op.name, 'Conv/kernel/Regularizer/l2_regularizer')
sess.run(variables_lib.global_variables_initializer())
self.assertAlmostEqual(sess.run(wd), weight_decay * l2_loss.eval())
示例6: _computeGradient
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import l2_loss [as 別名]
def _computeGradient(self, np_input, bias, dtype, data_format):
input_shape = output_shape = np_input.shape
bias_shape = bias.shape
input_tensor = constant_op.constant(
np_input, shape=input_shape, dtype=dtype)
bias_tensor = constant_op.constant(bias, shape=bias_shape, dtype=dtype)
if context.executing_eagerly():
def bias_add(input_tensor, bias_tensor):
return nn_ops.bias_add(
input_tensor, bias_tensor, data_format=data_format)
# The following is a work-around for TF issue 33660. Instead of
# calculating the analytical and numerical gradients for both
# inputs in a single call to compute_gradient, compute_gradient
# is called for each input separately.
def bias_add_1(input_tensor):
return bias_add(input_tensor, bias_tensor)
def bias_add_2(bias_tensor):
return bias_add(input_tensor, bias_tensor)
input_jacob_a, input_jacob_n = gradient_checker_v2.compute_gradient(
bias_add_1, [input_tensor])
bias_jacob_a, bias_jacob_n = gradient_checker_v2.compute_gradient(
bias_add_2, [bias_tensor])
# Test gradient of BiasAddGrad
def bias_add_grad_function(upstream_gradients):
with backprop.GradientTape() as tape:
tape.watch(bias_tensor)
bias_add_output = bias_add(input_tensor, bias_tensor)
gradient_injector_output = bias_add_output * upstream_gradients
return tape.gradient(gradient_injector_output, bias_tensor)
upstream_tensor = self._random_tensor(output_shape, dtype)
grad_jacob_a, grad_jacob_n = gradient_checker_v2.compute_gradient(
bias_add_grad_function, [upstream_tensor])
else:
output_tensor = nn_ops.bias_add(
input_tensor, bias_tensor, data_format=data_format)
jacobians = gradient_checker.compute_gradient(
[input_tensor, bias_tensor], [input_shape, bias_shape],
output_tensor, output_shape)
(input_jacob_a, input_jacob_n), (bias_jacob_a, bias_jacob_n) = jacobians
# Test gradient of BiasAddGrad
bias_add_grad = gradients_impl.gradients(
nn_ops.l2_loss(output_tensor), bias_tensor)[0]
grad_jacob_a, grad_jacob_n = gradient_checker.compute_gradient(
output_tensor, output_shape, bias_add_grad, bias_shape)
return ((input_jacob_a, bias_jacob_a, grad_jacob_a),
(input_jacob_n, bias_jacob_n, grad_jacob_n))
示例7: global_norm
# 需要導入模塊: from tensorflow.python.ops import nn_ops [as 別名]
# 或者: from tensorflow.python.ops.nn_ops import l2_loss [as 別名]
def global_norm(t_list, name=None):
"""Computes the global norm of multiple tensors.
Given a tuple or list of tensors `t_list`, this operation returns the
global norm of the elements in all tensors in `t_list`. The global norm is
computed as:
`global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))`
Any entries in `t_list` that are of type None are ignored.
Args:
t_list: A tuple or list of mixed `Tensors`, `IndexedSlices`, or None.
name: A name for the operation (optional).
Returns:
A 0-D (scalar) `Tensor` of type `float`.
Raises:
TypeError: If `t_list` is not a sequence.
"""
if (not isinstance(t_list, collections.Sequence)
or isinstance(t_list, six.string_types)):
raise TypeError("t_list should be a sequence")
t_list = list(t_list)
with ops.name_scope(name, "global_norm", t_list) as name:
values = [
ops.convert_to_tensor(
t.values if isinstance(t, ops.IndexedSlices) else t,
name="t_%d" % i)
if t is not None else t
for i, t in enumerate(t_list)]
half_squared_norms = []
for v in values:
if v is not None:
with ops.colocate_with(v):
half_squared_norms.append(nn_ops.l2_loss(v))
half_squared_norm = math_ops.reduce_sum(array_ops.pack(half_squared_norms))
norm = math_ops.sqrt(
half_squared_norm *
constant_op.constant(2.0, dtype=half_squared_norm.dtype),
name="global_norm")
return norm