當前位置: 首頁>>代碼示例>>Python>>正文


Python nn_impl.l2_normalize方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.nn_impl.l2_normalize方法的典型用法代碼示例。如果您正苦於以下問題:Python nn_impl.l2_normalize方法的具體用法?Python nn_impl.l2_normalize怎麽用?Python nn_impl.l2_normalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.nn_impl的用法示例。


在下文中一共展示了nn_impl.l2_normalize方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _compute_cosine_distance

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _compute_cosine_distance(cls, inputs, clusters, inputs_normalized=True):
    """Computes cosine distance between each input and each cluster center.

    Args:
      inputs: list of input Tensor.
      clusters: cluster Tensor
      inputs_normalized: if True, it assumes that inp and clusters are
      normalized and computes the dot product which is equivalent to the cosine
      distance. Else it L2 normalizes the inputs first.

    Returns:
      list of Tensors, where each element corresponds to each element in inp.
      The value is the distance of each row to all the cluster centers.
    """
    output = []
    if not inputs_normalized:
      with ops.colocate_with(clusters):
        clusters = nn_impl.l2_normalize(clusters, dim=1)
    for inp in inputs:
      with ops.colocate_with(inp):
        if not inputs_normalized:
          inp = nn_impl.l2_normalize(inp, dim=1)
        output.append(1 - math_ops.matmul(inp, clusters, transpose_b=True))
    return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:clustering_ops.py

示例2: _infer_graph

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _infer_graph(self, inputs, clusters):
    """Maps input to closest cluster and the score.

    Args:
      inputs: list of input Tensors.
      clusters: Tensor of cluster centers.

    Returns:
      List of tuple, where each value in tuple corresponds to a value in inp.
      The tuple has following three elements:
      all_scores: distance of each input to each cluster center.
      score: distance of each input to closest cluster center.
      cluster_idx: index of cluster center closest to the corresponding input.
    """
    assert isinstance(inputs, list)
    # Pairwise distances are used only by transform(). In all other cases, this
    # sub-graph is not evaluated.
    scores = self._distance_graph(inputs, clusters, self._distance_metric)
    output = []
    if (self._distance_metric == COSINE_DISTANCE and
        not self._clusters_l2_normalized()):
      # The cosine distance between normalized vectors x and y is the same as
      # 2 * squared_euclidian_distance. We are using this fact and reusing the
      # nearest_neighbors op.
      # TODO(ands): Support COSINE distance in nearest_neighbors and remove
      # this.
      with ops.colocate_with(clusters):
        clusters = nn_impl.l2_normalize(clusters, dim=1)
    for inp, score in zip(inputs, scores):
      with ops.colocate_with(inp):
        (indices,
         distances) = gen_clustering_ops.nearest_neighbors(inp, clusters, 1)
        if self._distance_metric == COSINE_DISTANCE:
          distances *= 0.5
        output.append(
            (score, array_ops.squeeze(distances), array_ops.squeeze(indices)))
    return zip(*output) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:39,代碼來源:clustering_ops.py

示例3: _l2_normalize_data

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _l2_normalize_data(cls, inputs):
    """Normalized the input data."""
    output = []
    for inp in inputs:
      with ops.colocate_with(inp):
        output.append(nn_impl.l2_normalize(inp, dim=1))
    return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:clustering_ops.py

示例4: _full_batch_training_op

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _full_batch_training_op(self, inputs, cluster_idx_list, cluster_centers):
    """Creates an op for training for full batch case.

    Args:
      inputs: list of input Tensors.
      cluster_idx_list: A vector (or list of vectors). Each element in the
        vector corresponds to an input row in 'inp' and specifies the cluster id
        corresponding to the input.
      cluster_centers: Tensor Ref of cluster centers.

    Returns:
      An op for doing an update of mini-batch k-means.
    """
    cluster_sums = []
    cluster_counts = []
    epsilon = constant_op.constant(1e-6, dtype=inputs[0].dtype)
    for inp, cluster_idx in zip(inputs, cluster_idx_list):
      with ops.colocate_with(inp):
        cluster_sums.append(
            math_ops.unsorted_segment_sum(inp, cluster_idx, self._num_clusters))
        cluster_counts.append(
            math_ops.unsorted_segment_sum(
                array_ops.reshape(
                    array_ops.ones(
                        array_ops.reshape(array_ops.shape(inp)[0], [-1])),
                    [-1, 1]), cluster_idx, self._num_clusters))
    with ops.colocate_with(cluster_centers):
      new_clusters_centers = math_ops.add_n(cluster_sums) / (math_ops.cast(
          math_ops.add_n(cluster_counts), cluster_sums[0].dtype) + epsilon)
      if self._clusters_l2_normalized():
        new_clusters_centers = nn_impl.l2_normalize(new_clusters_centers, dim=1)
    return state_ops.assign(cluster_centers, new_clusters_centers) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:clustering_ops.py

示例5: _init_clusters

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _init_clusters(self):
    """Initialization of clusters.

    Returns:
    Tuple with following elements:
      cluster_centers: a Tensor for storing cluster centers
      cluster_counts: a Tensor for storing counts of points assigned to this
        cluster. This is used by mini-batch training.
    """
    init = self._initial_clusters
    if init == RANDOM_INIT:
      clusters_init = self._init_clusters_random()
    elif init == KMEANS_PLUS_PLUS_INIT:
      # Points from only the first shard are used for initializing centers.
      # TODO(ands): Use all points.
      clusters_init = gen_clustering_ops.kmeans_plus_plus_initialization(
          self._inputs[0], self._num_clusters, self._random_seed,
          self._kmeans_plus_plus_num_retries)
    elif callable(init):
      clusters_init = init(self._inputs, self._num_clusters)
    elif not isinstance(init, str):
      clusters_init = init
    else:
      assert False, 'Unsupported init passed to Kmeans %s' % str(init)
    if self._distance_metric == COSINE_DISTANCE and clusters_init is not None:
      clusters_init = nn_impl.l2_normalize(clusters_init, dim=1)
    clusters_init = clusters_init if clusters_init is not None else []
    cluster_centers = variables.Variable(
        clusters_init, name='clusters', validate_shape=False)
    cluster_counts = (variables.Variable(
        array_ops.ones(
            [self._num_clusters], dtype=dtypes.int64)) if self._use_mini_batch
                      else None)
    return cluster_centers, cluster_counts 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:36,代碼來源:clustering_ops.py

示例6: training_graph

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def training_graph(self):
    """Generate a training graph for kmeans algorithm.

    Returns:
      A tuple consisting of:
      all_scores: A matrix (or list of matrices) of dimensions (num_input,
        num_clusters) where the value is the distance of an input vector and a
        cluster center.
      cluster_idx: A vector (or list of vectors). Each element in the vector
        corresponds to an input row in 'inp' and specifies the cluster id
        corresponding to the input.
      scores: Similar to cluster_idx but specifies the distance to the
        assigned cluster instead.
      training_op: an op that runs an iteration of training.
    """
    # Implementation of kmeans.
    inputs = self._inputs
    cluster_centers_var, total_counts = self._init_clusters()
    cluster_centers = cluster_centers_var

    if self._distance_metric == COSINE_DISTANCE:
      inputs = self._l2_normalize_data(inputs)
      if not self._clusters_l2_normalized():
        cluster_centers = nn_impl.l2_normalize(cluster_centers, dim=1)

    all_scores, scores, cluster_idx = self._infer_graph(inputs, cluster_centers)
    if self._use_mini_batch:
      training_op = self._mini_batch_training_op(inputs, cluster_idx,
                                                 cluster_centers,
                                                 cluster_centers_var,
                                                 total_counts)
    else:
      assert cluster_centers == cluster_centers_var
      training_op = self._full_batch_training_op(inputs, cluster_idx,
                                                 cluster_centers_var)
    return all_scores, cluster_idx, scores, training_op 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:38,代碼來源:clustering_ops.py

示例7: _sample_n

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _sample_n(self, n, seed=None):
        shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
        w = control_flow_ops.cond(gen_math_ops.equal(self.__m, 3),
                                  lambda: self.__sample_w3(n, seed),
                                  lambda: self.__sample_w_rej(n, seed))

        v = nn_impl.l2_normalize(array_ops.transpose(
            array_ops.transpose(random_ops.random_normal(shape, dtype=self.dtype, seed=seed))[1:]), axis=-1)

        x = array_ops.concat((w, math_ops.sqrt(1 - w ** 2) * v), axis=-1)
        z = self.__householder_rotation(x)

        return z 
開發者ID:nicola-decao,項目名稱:s-vae-tf,代碼行數:15,代碼來源:von_mises_fisher.py

示例8: __householder_rotation

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def __householder_rotation(self, x):
        u = nn_impl.l2_normalize(self.__e1 - self._loc, axis=-1)
        z = x - 2 * math_ops.reduce_sum(x * u, axis=-1, keepdims=True) * u
        return z 
開發者ID:nicola-decao,項目名稱:s-vae-tf,代碼行數:6,代碼來源:von_mises_fisher.py

示例9: _sample_n

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _sample_n(self, n, seed=None):
        return nn_impl.l2_normalize(random_ops.random_normal(shape=array_ops.concat(([n], [self._dim + 1]), 0),
                                                             dtype=self.dtype, seed=seed), axis=-1) 
開發者ID:nicola-decao,項目名稱:s-vae-tf,代碼行數:5,代碼來源:hyperspherical_uniform.py

示例10: _compute_weights

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _compute_weights(self):
        """Generate weights by combining the direction of weight vector
         with it's norm """
        with variable_scope.variable_scope("compute_weights"):
            self.layer.kernel = (
                nn_impl.l2_normalize(self.layer.v, axis=self.norm_axes) * self.layer.g
            ) 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:9,代碼來源:temporal_convolutional_network.py

示例11: _test_l2_normalization

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _test_l2_normalization(data, axis, fused_activation_function=None):
    """ One iteration of L2_NORMALIZATION """
    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        out = nn_impl.l2_normalize(in_data, axis)
        out = with_fused_activation_function(out, fused_activation_function)
        compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out]) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:9,代碼來源:test_forward.py

示例12: _initialize_clusters

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def _initialize_clusters(self,
                           cluster_centers,
                           cluster_centers_initialized,
                           cluster_centers_updated):
    """Returns an op to initialize the cluster centers."""

    init = self._initial_clusters
    if init == RANDOM_INIT:
      clusters_init = self._init_clusters_random()
    elif init == KMEANS_PLUS_PLUS_INIT:
      # Points from only the first shard are used for initializing centers.
      # TODO(ands): Use all points.
      inp = self._inputs[0]
      if self._distance_metric == COSINE_DISTANCE:
        inp = nn_impl.l2_normalize(inp, dim=1)
      clusters_init = gen_clustering_ops.kmeans_plus_plus_initialization(
          inp, self._num_clusters, self._random_seed,
          self._kmeans_plus_plus_num_retries)
    elif callable(init):
      clusters_init = init(self._inputs, self._num_clusters)
    elif not isinstance(init, str):
      clusters_init = init
    else:
      assert False, 'Unsupported init passed to Kmeans %s' % str(init)
    if self._distance_metric == COSINE_DISTANCE and clusters_init is not None:
      clusters_init = nn_impl.l2_normalize(clusters_init, dim=1)

    with ops.colocate_with(cluster_centers_initialized):
      initialized = control_flow_ops.with_dependencies(
          [clusters_init],
          array_ops.identity(cluster_centers_initialized))
    with ops.colocate_with(cluster_centers):
      assign_centers = state_ops.assign(cluster_centers, clusters_init,
                                        validate_shape=False)
      if cluster_centers_updated != cluster_centers:
        assign_centers = control_flow_ops.group(
            assign_centers,
            state_ops.assign(cluster_centers_updated, clusters_init,
                             validate_shape=False))
      assign_centers = control_flow_ops.with_dependencies(
          [assign_centers],
          state_ops.assign(cluster_centers_initialized, True))
      return control_flow_ops.cond(initialized,
                                   control_flow_ops.no_op,
                                   lambda: assign_centers).op 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:47,代碼來源:clustering_ops.py

示例13: training_graph

# 需要導入模塊: from tensorflow.python.ops import nn_impl [as 別名]
# 或者: from tensorflow.python.ops.nn_impl import l2_normalize [as 別名]
def training_graph(self):
    """Generate a training graph for kmeans algorithm.

    Returns:
      A tuple consisting of:
      all_scores: A matrix (or list of matrices) of dimensions (num_input,
        num_clusters) where the value is the distance of an input vector and a
        cluster center.
      cluster_idx: A vector (or list of vectors). Each element in the vector
        corresponds to an input row in 'inp' and specifies the cluster id
        corresponding to the input.
      scores: Similar to cluster_idx but specifies the distance to the
        assigned cluster instead.
      cluster_centers_initialized: scalar indicating whether clusters have been
        initialized.
      init_op: an op to initialize the clusters.
      training_op: an op that runs an iteration of training.
    """
    # Implementation of kmeans.
    inputs = self._inputs
    (cluster_centers_var,
     cluster_centers_initialized,
     total_counts,
     cluster_centers_updated,
     update_in_steps) = self._create_variables()
    init_op = self._initialize_clusters(cluster_centers_var,
                                        cluster_centers_initialized,
                                        cluster_centers_updated)
    cluster_centers = cluster_centers_var

    if self._distance_metric == COSINE_DISTANCE:
      inputs = self._l2_normalize_data(inputs)
      if not self._clusters_l2_normalized():
        cluster_centers = nn_impl.l2_normalize(cluster_centers, dim=1)

    all_scores, scores, cluster_idx = self._infer_graph(inputs, cluster_centers)
    if self._use_mini_batch:
      sync_updates_op = self._mini_batch_sync_updates_op(
          update_in_steps,
          cluster_centers_var, cluster_centers_updated,
          total_counts)
      assert sync_updates_op is not None
      with ops.control_dependencies([sync_updates_op]):
        training_op = self._mini_batch_training_op(
            inputs, cluster_idx, cluster_centers_updated, total_counts)
    else:
      assert cluster_centers == cluster_centers_var
      training_op = self._full_batch_training_op(inputs, cluster_idx,
                                                 cluster_centers_var)

    return (all_scores, cluster_idx, scores,
            cluster_centers_initialized, init_op, training_op) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:54,代碼來源:clustering_ops.py


注:本文中的tensorflow.python.ops.nn_impl.l2_normalize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。