本文整理匯總了Python中tensorflow.python.ops.nn.softmax_cross_entropy_with_logits方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.softmax_cross_entropy_with_logits方法的具體用法?Python nn.softmax_cross_entropy_with_logits怎麽用?Python nn.softmax_cross_entropy_with_logits使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.nn
的用法示例。
在下文中一共展示了nn.softmax_cross_entropy_with_logits方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: binary_crossentropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def binary_crossentropy(output, target, from_logits=False):
"""Binary crossentropy between an output tensor and a target tensor.
Arguments:
output: A tensor.
target: A tensor with the same shape as `output`.
from_logits: Whether `output` is expected to be a logits tensor.
By default, we consider that `output`
encodes a probability distribution.
Returns:
A tensor.
"""
# Note: nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# transform back to logits
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon, 1 - epsilon)
output = math_ops.log(output / (1 - output))
return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
示例2: binary_crossentropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def binary_crossentropy(target, output, from_logits=False):
"""Binary crossentropy between an output tensor and a target tensor.
Arguments:
target: A tensor with the same shape as `output`.
output: A tensor.
from_logits: Whether `output` is expected to be a logits tensor.
By default, we consider that `output`
encodes a probability distribution.
Returns:
A tensor.
"""
# Note: nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# transform back to logits
epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
output = math_ops.log(output / (1 - output))
return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:backend.py
示例3: categorical_crossentropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def categorical_crossentropy(output, target, from_logits=False):
"""Categorical crossentropy between an output tensor and a target tensor.
Arguments:
output: A tensor resulting from a softmax
(unless `from_logits` is True, in which
case `output` is expected to be the logits).
target: A tensor of the same shape as `output`.
from_logits: Boolean, whether `output` is the
result of a softmax, or is a tensor of logits.
Returns:
Output tensor.
"""
# Note: nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# scale preds so that the class probas of each sample sum to 1
output /= math_ops.reduce_sum(
output, reduction_indices=len(output.get_shape()) - 1, keep_dims=True)
# manual computation of crossentropy
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon, 1. - epsilon)
return -math_ops.reduce_sum(
target * math_ops.log(output),
reduction_indices=len(output.get_shape()) - 1)
else:
return nn.softmax_cross_entropy_with_logits(labels=target, logits=output)
示例4: sparse_categorical_crossentropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def sparse_categorical_crossentropy(output, target, from_logits=False):
"""Categorical crossentropy with integer targets.
Arguments:
output: A tensor resulting from a softmax
(unless `from_logits` is True, in which
case `output` is expected to be the logits).
target: An integer tensor.
from_logits: Boolean, whether `output` is the
result of a softmax, or is a tensor of logits.
Returns:
Output tensor.
"""
# Note: nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon, 1 - epsilon)
output = math_ops.log(output)
output_shape = output.get_shape()
targets = cast(flatten(target), 'int64')
logits = array_ops.reshape(output, [-1, int(output_shape[-1])])
res = nn.sparse_softmax_cross_entropy_with_logits(
labels=targets, logits=logits)
if len(output_shape) == 3:
# if our output includes timesteps we need to reshape
return array_ops.reshape(res, array_ops.shape(output)[:-1])
else:
return res
示例5: sequence_classifier
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def sequence_classifier(decoding, labels, sampling_decoding=None, name=None):
"""Returns predictions and loss for sequence of predictions.
Args:
decoding: List of Tensors with predictions.
labels: List of Tensors with labels.
sampling_decoding: Optional, List of Tensor with predictions to be used
in sampling. E.g. they shouldn't have dependncy on outputs.
If not provided, decoding is used.
name: Operation name.
Returns:
Predictions and losses tensors.
"""
with ops.name_scope(name, "sequence_classifier", [decoding, labels]):
predictions, xent_list = [], []
for i, pred in enumerate(decoding):
xent_list.append(nn.softmax_cross_entropy_with_logits(
labels=labels[i], logits=pred,
name="sequence_loss/xent_raw{0}".format(i)))
if sampling_decoding:
predictions.append(nn.softmax(sampling_decoding[i]))
else:
predictions.append(nn.softmax(pred))
xent = math_ops.add_n(xent_list, name="sequence_loss/xent")
loss = math_ops.reduce_sum(xent, name="sequence_loss")
return array_ops.stack(predictions, axis=1), loss
示例6: testNpairs
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def testNpairs(self):
with self.cached_session():
num_data = 15
feat_dim = 6
num_classes = 5
reg_lambda = 0.02
embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32)
embeddings_positive = np.random.rand(num_data, feat_dim).astype(
np.float32)
labels = np.random.randint(
0, num_classes, size=(num_data)).astype(np.float32)
# Reshape labels to compute adjacency matrix.
labels_reshaped = np.reshape(labels, (labels.shape[0], 1))
# Compute the loss in NP
reg_term = np.mean(np.sum(np.square(embeddings_anchor), 1))
reg_term += np.mean(np.sum(np.square(embeddings_positive), 1))
reg_term *= 0.25 * reg_lambda
similarity_matrix = np.matmul(embeddings_anchor, embeddings_positive.T)
labels_remapped = np.equal(
labels_reshaped, labels_reshaped.T).astype(np.float32)
labels_remapped /= np.sum(labels_remapped, axis=1, keepdims=True)
xent_loss = math_ops.reduce_mean(nn.softmax_cross_entropy_with_logits(
logits=ops.convert_to_tensor(similarity_matrix),
labels=ops.convert_to_tensor(labels_remapped))).eval()
loss_np = xent_loss + reg_term
# Compute the loss in TF
loss_tf = metric_learning.npairs_loss(
labels=ops.convert_to_tensor(labels),
embeddings_anchor=ops.convert_to_tensor(embeddings_anchor),
embeddings_positive=ops.convert_to_tensor(embeddings_positive),
reg_lambda=reg_lambda)
loss_tf = loss_tf.eval()
self.assertAllClose(loss_np, loss_tf)
示例7: testNpairsMultiLabel
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def testNpairsMultiLabel(self):
with self.cached_session():
num_data = 15
feat_dim = 6
num_classes = 10
reg_lambda = 0.02
embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32)
embeddings_positive = np.random.rand(num_data, feat_dim).astype(
np.float32)
labels = np.random.randint(0, 2, (num_data, num_classes))
# set entire column to one so that each row has at least one bit set.
labels[:, -1] = 1
# Compute the loss in NP
reg_term = np.mean(np.sum(np.square(embeddings_anchor), 1))
reg_term += np.mean(np.sum(np.square(embeddings_positive), 1))
reg_term *= 0.25 * reg_lambda
similarity_matrix = np.matmul(embeddings_anchor, embeddings_positive.T)
labels_remapped = np.dot(labels, labels.T).astype(np.float)
labels_remapped /= np.sum(labels_remapped, 1, keepdims=True)
xent_loss = math_ops.reduce_mean(nn.softmax_cross_entropy_with_logits(
logits=ops.convert_to_tensor(similarity_matrix),
labels=ops.convert_to_tensor(labels_remapped))).eval()
loss_np = xent_loss + reg_term
# Compute the loss in TF
loss_tf = metric_learning.npairs_loss_multilabel(
sparse_labels=convert_to_list_of_sparse_tensor(labels),
embeddings_anchor=ops.convert_to_tensor(embeddings_anchor),
embeddings_positive=ops.convert_to_tensor(embeddings_positive),
reg_lambda=reg_lambda)
loss_tf = loss_tf.eval()
self.assertAllClose(loss_np, loss_tf)
示例8: sequence_classifier
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def sequence_classifier(decoding, labels, sampling_decoding=None, name=None):
"""Returns predictions and loss for sequence of predictions.
Args:
decoding: List of Tensors with predictions.
labels: List of Tensors with labels.
sampling_decoding: Optional, List of Tensor with predictions to be used
in sampling. E.g. they shouldn't have dependncy on outputs.
If not provided, decoding is used.
name: Operation name.
Returns:
Predictions and losses tensors.
"""
with ops.name_scope(name, "sequence_classifier", [decoding, labels]):
predictions, xent_list = [], []
for i, pred in enumerate(decoding):
xent_list.append(nn.softmax_cross_entropy_with_logits(
pred, labels[i],
name="sequence_loss/xent_raw{0}".format(i)))
if sampling_decoding:
predictions.append(nn.softmax(sampling_decoding[i]))
else:
predictions.append(nn.softmax(pred))
xent = math_ops.add_n(xent_list, name="sequence_loss/xent")
loss = math_ops.reduce_sum(xent, name="sequence_loss")
return array_ops_.pack(predictions, axis=1), loss
示例9: npairs_loss_hash
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def npairs_loss_hash(labels, embeddings_anchor, embeddings_positive, objective, similarity_func, reg_lambda=0.002):
"""Computes the npairs loss with objective
similarity base
Args:
labels - 1D tensor [batch_size/2],
tf.int32
embeddings_anchor - 2D tensor [batch_size/2, embedding_dim]
embedding vectors for anchor images
embeddings_positive - 2D tensor [batch_size/2, embedding_dim]
embedding vectors for positive images
objective - 2D tensor [batch_size/2, embedding_dim]
should be binary(0 or 1)
similarity_func - func
args :
anc - 2D tensor [ndata, embedding_dim]
pos - 2D tensor [ndata, embedding_dim]
obj - 2D tensor [ndata, embedding_dim]
which is binary
return :
2D tensor [ndata, ndata]
reg_lambda - float for L2 regularization term of embedding vectors
Returns:
npairs_loss: tf.float32 scalar.
"""
reg_anchor = math_ops.reduce_mean(math_ops.reduce_sum(math_ops.square(embeddings_anchor), 1))
reg_positive = math_ops.reduce_mean(math_ops.reduce_sum(math_ops.square(embeddings_positive), 1))
l2loss = math_ops.multiply(0.25 * reg_lambda, reg_anchor + reg_positive, name='l2loss')
similarity_matrix = similarity_func(anc=embeddings_anchor, pos=embeddings_positive, obj=objective) # [batch_size/2, batch_size/2]
# Reshape [batch_size] label tensor to a [batch_size, 1] label tensor.
lshape = array_ops.shape(labels)
assert lshape.shape == 1
labels = array_ops.reshape(labels, [lshape[0], 1])
labels_remapped = math_ops.to_float(math_ops.equal(labels, array_ops.transpose(labels)))
labels_remapped /= math_ops.reduce_sum(labels_remapped, 1, keep_dims=True)
# Add the softmax loss.
xent_loss = nn.softmax_cross_entropy_with_logits(logits=similarity_matrix, labels=labels_remapped)
xent_loss = math_ops.reduce_mean(xent_loss, name='xentropy')
return l2loss + xent_loss
示例10: categorical_crossentropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def categorical_crossentropy(target, output, from_logits=False):
"""Categorical crossentropy between an output tensor and a target tensor.
Arguments:
target: A tensor of the same shape as `output`.
output: A tensor resulting from a softmax
(unless `from_logits` is True, in which
case `output` is expected to be the logits).
from_logits: Boolean, whether `output` is the
result of a softmax, or is a tensor of logits.
Returns:
Output tensor.
"""
# Note: nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# scale preds so that the class probas of each sample sum to 1
output /= math_ops.reduce_sum(
output, axis=len(output.get_shape()) - 1, keep_dims=True)
# manual computation of crossentropy
epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
return -math_ops.reduce_sum(
target * math_ops.log(output),
axis=len(output.get_shape()) - 1)
else:
return nn.softmax_cross_entropy_with_logits(labels=target, logits=output)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:30,代碼來源:backend.py
示例11: softmax_cross_entropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def softmax_cross_entropy(
onehot_labels, logits, weights=1.0, label_smoothing=0, scope=None,
loss_collection=ops.GraphKeys.LOSSES,
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
"""Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits.
`weights` acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If `weights` is a
tensor of shape `[batch_size]`, then the loss weights apply to each
corresponding sample.
If `label_smoothing` is nonzero, smooth the labels towards 1/num_classes:
new_onehot_labels = onehot_labels * (1 - label_smoothing)
+ label_smoothing / num_classes
Args:
onehot_labels: `[batch_size, num_classes]` target one-hot-encoded labels.
logits: [batch_size, num_classes] logits outputs of the network .
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`onehot_labels`, and must be broadcastable to `onehot_labels` (i.e., all
dimensions must be either `1`, or the same as the corresponding `losses`
dimension).
label_smoothing: If greater than 0 then smooth the labels.
scope: the scope for the operations performed in computing the loss.
loss_collection: collection to which the loss will be added.
reduction: Type of reduction to apply to loss.
Returns:
Weighted loss `Tensor` of the same type as `logits`. If `reduction` is
`NONE`, this has shape `[batch_size]`; otherwise, it is scalar.
Raises:
ValueError: If the shape of `logits` doesn't match that of `onehot_labels`
or if the shape of `weights` is invalid or if `weights` is None.
"""
with ops.name_scope(scope, "softmax_cross_entropy_loss",
(logits, onehot_labels, weights)) as scope:
logits = ops.convert_to_tensor(logits)
onehot_labels = math_ops.cast(onehot_labels, logits.dtype)
logits.get_shape().assert_is_compatible_with(onehot_labels.get_shape())
if label_smoothing > 0:
num_classes = math_ops.cast(
array_ops.shape(onehot_labels)[1], logits.dtype)
smooth_positives = 1.0 - label_smoothing
smooth_negatives = label_smoothing / num_classes
onehot_labels = onehot_labels * smooth_positives + smooth_negatives
losses = nn.softmax_cross_entropy_with_logits(labels=onehot_labels,
logits=logits,
name="xentropy")
return compute_weighted_loss(
losses, weights, scope, loss_collection, reduction=reduction)
# TODO(ptucker): Merge this with similar method in metrics_impl.
示例12: deprecated_flipped_softmax_cross_entropy_with_logits
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def deprecated_flipped_softmax_cross_entropy_with_logits(logits,
labels,
dim=-1,
name=None):
"""Computes softmax cross entropy between `logits` and `labels`.
This function diffs from tf.nn.softmax_cross_entropy_with_logits only in the
argument order.
Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class). For
example, each CIFAR-10 image is labeled with one and only one label: an image
can be a dog or a truck, but not both.
**NOTE:** While the classes are mutually exclusive, their probabilities
need not be. All that is required is that each row of `labels` is
a valid probability distribution. If they are not, the computation of the
gradient will be incorrect.
If using exclusive `labels` (wherein one and only
one class is true at a time), see `sparse_softmax_cross_entropy_with_logits`.
**WARNING:** This op expects unscaled logits, since it performs a `softmax`
on `logits` internally for efficiency. Do not call this op with the
output of `softmax`, as it will produce incorrect results.
`logits` and `labels` must have the same shape `[batch_size, num_classes]`
and the same dtype (either `float16`, `float32`, or `float64`).
Args:
logits: Unscaled log probabilities.
labels: Each row `labels[i]` must be a valid probability distribution.
dim: The class dimension. Defaulted to -1 which is the last dimension.
name: A name for the operation (optional).
Returns:
A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the
softmax cross entropy loss.
"""
return nn.softmax_cross_entropy_with_logits(
labels=labels, logits=logits, dim=dim, name=name)
# TODO(b/33392402): Formally deprecate this API.
# After LSC (see b/33392402#comment1), this API will be deprecated and callers
# will be suggested to use the (updated version of)
# tf.nn.sparse_softmax_cross_entropy_with_logits.
示例13: softmax_cross_entropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def softmax_cross_entropy(
logits, onehot_labels, weights=1.0, label_smoothing=0, scope=None):
"""Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits.
`weights` acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If `weights` is a
tensor of size [`batch_size`], then the loss weights apply to each
corresponding sample.
If `label_smoothing` is nonzero, smooth the labels towards 1/num_classes:
new_onehot_labels = onehot_labels * (1 - label_smoothing)
+ label_smoothing / num_classes
Args:
logits: [batch_size, num_classes] logits outputs of the network .
onehot_labels: [batch_size, num_classes] one-hot-encoded labels.
weights: Coefficients for the loss. The tensor must be a scalar or a tensor
of shape [batch_size].
label_smoothing: If greater than 0 then smooth the labels.
scope: the scope for the operations performed in computing the loss.
Returns:
A scalar `Tensor` representing the mean loss value.
Raises:
ValueError: If the shape of `logits` doesn't match that of `onehot_labels`
or if the shape of `weights` is invalid or if `weights` is None.
"""
with ops.name_scope(scope, "softmax_cross_entropy_loss",
[logits, onehot_labels, weights]) as scope:
logits.get_shape().assert_is_compatible_with(onehot_labels.get_shape())
onehot_labels = math_ops.cast(onehot_labels, logits.dtype)
if label_smoothing > 0:
num_classes = math_ops.cast(
array_ops.shape(onehot_labels)[1], logits.dtype)
smooth_positives = 1.0 - label_smoothing
smooth_negatives = label_smoothing / num_classes
onehot_labels = onehot_labels * smooth_positives + smooth_negatives
losses = nn.softmax_cross_entropy_with_logits(labels=onehot_labels,
logits=logits,
name="xentropy")
return compute_weighted_loss(losses, weights, scope=scope)
示例14: softmax_cross_entropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def softmax_cross_entropy(
onehot_labels, logits, weights=1.0, label_smoothing=0, scope=None,
loss_collection=ops.GraphKeys.LOSSES):
"""Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits.
`weights` acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If `weights` is a
tensor of shape `[batch_size]`, then the loss weights apply to each
corresponding sample.
If `label_smoothing` is nonzero, smooth the labels towards 1/num_classes:
new_onehot_labels = onehot_labels * (1 - label_smoothing)
+ label_smoothing / num_classes
Args:
onehot_labels: `[batch_size, num_classes]` target one-hot-encoded labels.
logits: [batch_size, num_classes] logits outputs of the network .
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`onehot_labels`, and must be broadcastable to `onehot_labels` (i.e., all
dimensions must be either `1`, or the same as the corresponding `losses`
dimension).
label_smoothing: If greater than 0 then smooth the labels.
scope: the scope for the operations performed in computing the loss.
loss_collection: collection to which the loss will be added.
Returns:
A scalar `Tensor` representing the mean loss value.
Raises:
ValueError: If the shape of `logits` doesn't match that of `onehot_labels`
or if the shape of `weights` is invalid or if `weights` is None.
"""
with ops.name_scope(scope, "softmax_cross_entropy_loss",
(logits, onehot_labels, weights)) as scope:
logits = ops.convert_to_tensor(logits)
onehot_labels = math_ops.cast(onehot_labels, logits.dtype)
logits.get_shape().assert_is_compatible_with(onehot_labels.get_shape())
if label_smoothing > 0:
num_classes = math_ops.cast(
array_ops.shape(onehot_labels)[1], logits.dtype)
smooth_positives = 1.0 - label_smoothing
smooth_negatives = label_smoothing / num_classes
onehot_labels = onehot_labels * smooth_positives + smooth_negatives
losses = nn.softmax_cross_entropy_with_logits(labels=onehot_labels,
logits=logits,
name="xentropy")
return compute_weighted_loss(losses, weights, scope, loss_collection)
# TODO(ptucker): Merge this with similar method in metrics_impl.
示例15: deprecated_flipped_sparse_softmax_cross_entropy_with_logits
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def deprecated_flipped_sparse_softmax_cross_entropy_with_logits(logits,
labels,
name=None):
"""Computes sparse softmax cross entropy between `logits` and `labels`.
This function diffs from tf.nn.sparse_softmax_cross_entropy_with_logits only
in the argument order.
Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class). For
example, each CIFAR-10 image is labeled with one and only one label: an image
can be a dog or a truck, but not both.
**NOTE:** For this operation, the probability of a given label is considered
exclusive. That is, soft classes are not allowed, and the `labels` vector
must provide a single specific index for the true class for each row of
`logits` (each minibatch entry). For soft softmax classification with
a probability distribution for each entry, see
`softmax_cross_entropy_with_logits`.
**WARNING:** This op expects unscaled logits, since it performs a softmax
on `logits` internally for efficiency. Do not call this op with the
output of `softmax`, as it will produce incorrect results.
A common use case is to have logits of shape `[batch_size, num_classes]` and
labels of shape `[batch_size]`. But higher dimensions are supported.
Args:
logits: Unscaled log probabilities of rank `r` and shape
`[d_0, d_1, ..., d_{r-2}, num_classes]` and dtype `float32` or `float64`.
labels: `Tensor` of shape `[d_0, d_1, ..., d_{r-2}]` and dtype `int32` or
`int64`. Each entry in `labels` must be an index in `[0, num_classes)`.
Other values will raise an exception when this op is run on CPU, and
return `NaN` for corresponding corresponding loss and gradient rows
on GPU.
name: A name for the operation (optional).
Returns:
A `Tensor` of the same shape as `labels` and of the same type as `logits`
with the softmax cross entropy loss.
Raises:
ValueError: If logits are scalars (need to have rank >= 1) or if the rank
of the labels is not equal to the rank of the labels minus one.
"""
return nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name=name)
# TODO(b/33392402): Formally deprecate this API.
# After LSC (see b/33392402#comment1), this API will be deprecated and callers
# will be suggested to use the (updated version of)
# tf.nn.sigmoid_cross_entropy_with_logits.