當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.softmax_cross_entropy_with_logits方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.nn.softmax_cross_entropy_with_logits方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.softmax_cross_entropy_with_logits方法的具體用法?Python nn.softmax_cross_entropy_with_logits怎麽用?Python nn.softmax_cross_entropy_with_logits使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.nn的用法示例。


在下文中一共展示了nn.softmax_cross_entropy_with_logits方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: binary_crossentropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def binary_crossentropy(output, target, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.

  Arguments:
      output: A tensor.
      target: A tensor with the same shape as `output`.
      from_logits: Whether `output` is expected to be a logits tensor.
          By default, we consider that `output`
          encodes a probability distribution.

  Returns:
      A tensor.
  """
  # Note: nn.softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # transform back to logits
    epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon, 1 - epsilon)
    output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:backend.py

示例2: binary_crossentropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def binary_crossentropy(target, output, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.

  Arguments:
      target: A tensor with the same shape as `output`.
      output: A tensor.
      from_logits: Whether `output` is expected to be a logits tensor.
          By default, we consider that `output`
          encodes a probability distribution.

  Returns:
      A tensor.
  """
  # Note: nn.softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # transform back to logits
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:backend.py

示例3: categorical_crossentropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def categorical_crossentropy(output, target, from_logits=False):
  """Categorical crossentropy between an output tensor and a target tensor.

  Arguments:
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      target: A tensor of the same shape as `output`.
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.

  Returns:
      Output tensor.
  """
  # Note: nn.softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # scale preds so that the class probas of each sample sum to 1
    output /= math_ops.reduce_sum(
        output, reduction_indices=len(output.get_shape()) - 1, keep_dims=True)
    # manual computation of crossentropy
    epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon, 1. - epsilon)
    return -math_ops.reduce_sum(
        target * math_ops.log(output),
        reduction_indices=len(output.get_shape()) - 1)
  else:
    return nn.softmax_cross_entropy_with_logits(labels=target, logits=output) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:backend.py

示例4: sparse_categorical_crossentropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def sparse_categorical_crossentropy(output, target, from_logits=False):
  """Categorical crossentropy with integer targets.

  Arguments:
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      target: An integer tensor.
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.

  Returns:
      Output tensor.
  """
  # Note: nn.softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon, 1 - epsilon)
    output = math_ops.log(output)

  output_shape = output.get_shape()
  targets = cast(flatten(target), 'int64')
  logits = array_ops.reshape(output, [-1, int(output_shape[-1])])
  res = nn.sparse_softmax_cross_entropy_with_logits(
      labels=targets, logits=logits)
  if len(output_shape) == 3:
    # if our output includes timesteps we need to reshape
    return array_ops.reshape(res, array_ops.shape(output)[:-1])
  else:
    return res 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:backend.py

示例5: sequence_classifier

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def sequence_classifier(decoding, labels, sampling_decoding=None, name=None):
  """Returns predictions and loss for sequence of predictions.

  Args:
    decoding: List of Tensors with predictions.
    labels: List of Tensors with labels.
    sampling_decoding: Optional, List of Tensor with predictions to be used
      in sampling. E.g. they shouldn't have dependncy on outputs.
      If not provided, decoding is used.
    name: Operation name.

  Returns:
    Predictions and losses tensors.
  """
  with ops.name_scope(name, "sequence_classifier", [decoding, labels]):
    predictions, xent_list = [], []
    for i, pred in enumerate(decoding):
      xent_list.append(nn.softmax_cross_entropy_with_logits(
          labels=labels[i], logits=pred,
          name="sequence_loss/xent_raw{0}".format(i)))
      if sampling_decoding:
        predictions.append(nn.softmax(sampling_decoding[i]))
      else:
        predictions.append(nn.softmax(pred))
    xent = math_ops.add_n(xent_list, name="sequence_loss/xent")
    loss = math_ops.reduce_sum(xent, name="sequence_loss")
    return array_ops.stack(predictions, axis=1), loss 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:29,代碼來源:seq2seq_ops.py

示例6: testNpairs

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def testNpairs(self):
    with self.cached_session():
      num_data = 15
      feat_dim = 6
      num_classes = 5
      reg_lambda = 0.02

      embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32)
      embeddings_positive = np.random.rand(num_data, feat_dim).astype(
          np.float32)

      labels = np.random.randint(
          0, num_classes, size=(num_data)).astype(np.float32)
      # Reshape labels to compute adjacency matrix.
      labels_reshaped = np.reshape(labels, (labels.shape[0], 1))

      # Compute the loss in NP
      reg_term = np.mean(np.sum(np.square(embeddings_anchor), 1))
      reg_term += np.mean(np.sum(np.square(embeddings_positive), 1))
      reg_term *= 0.25 * reg_lambda

      similarity_matrix = np.matmul(embeddings_anchor, embeddings_positive.T)

      labels_remapped = np.equal(
          labels_reshaped, labels_reshaped.T).astype(np.float32)
      labels_remapped /= np.sum(labels_remapped, axis=1, keepdims=True)

      xent_loss = math_ops.reduce_mean(nn.softmax_cross_entropy_with_logits(
          logits=ops.convert_to_tensor(similarity_matrix),
          labels=ops.convert_to_tensor(labels_remapped))).eval()
      loss_np = xent_loss + reg_term

      # Compute the loss in TF
      loss_tf = metric_learning.npairs_loss(
          labels=ops.convert_to_tensor(labels),
          embeddings_anchor=ops.convert_to_tensor(embeddings_anchor),
          embeddings_positive=ops.convert_to_tensor(embeddings_positive),
          reg_lambda=reg_lambda)
      loss_tf = loss_tf.eval()
      self.assertAllClose(loss_np, loss_tf) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:42,代碼來源:metric_learning_test.py

示例7: testNpairsMultiLabel

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def testNpairsMultiLabel(self):
    with self.cached_session():
      num_data = 15
      feat_dim = 6
      num_classes = 10
      reg_lambda = 0.02

      embeddings_anchor = np.random.rand(num_data, feat_dim).astype(np.float32)
      embeddings_positive = np.random.rand(num_data, feat_dim).astype(
          np.float32)

      labels = np.random.randint(0, 2, (num_data, num_classes))
      # set entire column to one so that each row has at least one bit set.
      labels[:, -1] = 1

      # Compute the loss in NP
      reg_term = np.mean(np.sum(np.square(embeddings_anchor), 1))
      reg_term += np.mean(np.sum(np.square(embeddings_positive), 1))
      reg_term *= 0.25 * reg_lambda

      similarity_matrix = np.matmul(embeddings_anchor, embeddings_positive.T)

      labels_remapped = np.dot(labels, labels.T).astype(np.float)
      labels_remapped /= np.sum(labels_remapped, 1, keepdims=True)

      xent_loss = math_ops.reduce_mean(nn.softmax_cross_entropy_with_logits(
          logits=ops.convert_to_tensor(similarity_matrix),
          labels=ops.convert_to_tensor(labels_remapped))).eval()
      loss_np = xent_loss + reg_term

      # Compute the loss in TF
      loss_tf = metric_learning.npairs_loss_multilabel(
          sparse_labels=convert_to_list_of_sparse_tensor(labels),
          embeddings_anchor=ops.convert_to_tensor(embeddings_anchor),
          embeddings_positive=ops.convert_to_tensor(embeddings_positive),
          reg_lambda=reg_lambda)
      loss_tf = loss_tf.eval()

      self.assertAllClose(loss_np, loss_tf) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:41,代碼來源:metric_learning_test.py

示例8: sequence_classifier

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def sequence_classifier(decoding, labels, sampling_decoding=None, name=None):
  """Returns predictions and loss for sequence of predictions.

  Args:
    decoding: List of Tensors with predictions.
    labels: List of Tensors with labels.
    sampling_decoding: Optional, List of Tensor with predictions to be used
      in sampling. E.g. they shouldn't have dependncy on outputs.
      If not provided, decoding is used.
    name: Operation name.

  Returns:
    Predictions and losses tensors.
  """
  with ops.name_scope(name, "sequence_classifier", [decoding, labels]):
    predictions, xent_list = [], []
    for i, pred in enumerate(decoding):
      xent_list.append(nn.softmax_cross_entropy_with_logits(
          pred, labels[i],
          name="sequence_loss/xent_raw{0}".format(i)))
      if sampling_decoding:
        predictions.append(nn.softmax(sampling_decoding[i]))
      else:
        predictions.append(nn.softmax(pred))
    xent = math_ops.add_n(xent_list, name="sequence_loss/xent")
    loss = math_ops.reduce_sum(xent, name="sequence_loss")
    return array_ops_.pack(predictions, axis=1), loss 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:29,代碼來源:seq2seq_ops.py

示例9: npairs_loss_hash

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def npairs_loss_hash(labels, embeddings_anchor, embeddings_positive, objective, similarity_func, reg_lambda=0.002):
    """Computes the npairs loss with objective
    similarity base
    Args:
        labels - 1D tensor [batch_size/2],
            tf.int32
        embeddings_anchor - 2D tensor [batch_size/2, embedding_dim]
            embedding vectors for anchor images
        embeddings_positive - 2D tensor [batch_size/2, embedding_dim]
            embedding vectors for positive images
        objective -  2D tensor [batch_size/2, embedding_dim]
            should be binary(0 or 1)
        similarity_func - func 
            args : 
                anc - 2D tensor [ndata, embedding_dim]
                pos - 2D tensor [ndata, embedding_dim]
                obj - 2D tensor [ndata, embedding_dim]
                    which is binary
            return :
                2D tensor [ndata, ndata] 
        reg_lambda - float for  L2 regularization term of embedding vectors
    Returns:
        npairs_loss: tf.float32 scalar.
    """
    reg_anchor = math_ops.reduce_mean(math_ops.reduce_sum(math_ops.square(embeddings_anchor), 1))
    reg_positive = math_ops.reduce_mean(math_ops.reduce_sum(math_ops.square(embeddings_positive), 1))
    l2loss = math_ops.multiply(0.25 * reg_lambda, reg_anchor + reg_positive, name='l2loss')

    similarity_matrix = similarity_func(anc=embeddings_anchor, pos=embeddings_positive, obj=objective) # [batch_size/2, batch_size/2]
    # Reshape [batch_size] label tensor to a [batch_size, 1] label tensor.
    lshape = array_ops.shape(labels)
    assert lshape.shape == 1
    labels = array_ops.reshape(labels, [lshape[0], 1])

    labels_remapped = math_ops.to_float(math_ops.equal(labels, array_ops.transpose(labels)))
    labels_remapped /= math_ops.reduce_sum(labels_remapped, 1, keep_dims=True)

    # Add the softmax loss.
    xent_loss = nn.softmax_cross_entropy_with_logits(logits=similarity_matrix, labels=labels_remapped)
    xent_loss = math_ops.reduce_mean(xent_loss, name='xentropy')
    return l2loss + xent_loss 
開發者ID:maestrojeong,項目名稱:Deep-Hash-Table-ICML18,代碼行數:43,代碼來源:hash_dist.py

示例10: categorical_crossentropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def categorical_crossentropy(target, output, from_logits=False):
  """Categorical crossentropy between an output tensor and a target tensor.

  Arguments:
      target: A tensor of the same shape as `output`.
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.

  Returns:
      Output tensor.
  """
  # Note: nn.softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # scale preds so that the class probas of each sample sum to 1
    output /= math_ops.reduce_sum(
        output, axis=len(output.get_shape()) - 1, keep_dims=True)
    # manual computation of crossentropy
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
    return -math_ops.reduce_sum(
        target * math_ops.log(output),
        axis=len(output.get_shape()) - 1)
  else:
    return nn.softmax_cross_entropy_with_logits(labels=target, logits=output) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:30,代碼來源:backend.py

示例11: softmax_cross_entropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def softmax_cross_entropy(
    onehot_labels, logits, weights=1.0, label_smoothing=0, scope=None,
    loss_collection=ops.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
  """Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits.

  `weights` acts as a coefficient for the loss. If a scalar is provided,
  then the loss is simply scaled by the given value. If `weights` is a
  tensor of shape `[batch_size]`, then the loss weights apply to each
  corresponding sample.

  If `label_smoothing` is nonzero, smooth the labels towards 1/num_classes:
      new_onehot_labels = onehot_labels * (1 - label_smoothing)
                          + label_smoothing / num_classes

  Args:
    onehot_labels: `[batch_size, num_classes]` target one-hot-encoded labels.
    logits: [batch_size, num_classes] logits outputs of the network .
    weights: Optional `Tensor` whose rank is either 0, or the same rank as
      `onehot_labels`, and must be broadcastable to `onehot_labels` (i.e., all
      dimensions must be either `1`, or the same as the corresponding `losses`
      dimension).
    label_smoothing: If greater than 0 then smooth the labels.
    scope: the scope for the operations performed in computing the loss.
    loss_collection: collection to which the loss will be added.
    reduction: Type of reduction to apply to loss.

  Returns:
    Weighted loss `Tensor` of the same type as `logits`. If `reduction` is
    `NONE`, this has shape `[batch_size]`; otherwise, it is scalar.

  Raises:
    ValueError: If the shape of `logits` doesn't match that of `onehot_labels`
      or if the shape of `weights` is invalid or if `weights` is None.
  """
  with ops.name_scope(scope, "softmax_cross_entropy_loss",
                      (logits, onehot_labels, weights)) as scope:
    logits = ops.convert_to_tensor(logits)
    onehot_labels = math_ops.cast(onehot_labels, logits.dtype)
    logits.get_shape().assert_is_compatible_with(onehot_labels.get_shape())

    if label_smoothing > 0:
      num_classes = math_ops.cast(
          array_ops.shape(onehot_labels)[1], logits.dtype)
      smooth_positives = 1.0 - label_smoothing
      smooth_negatives = label_smoothing / num_classes
      onehot_labels = onehot_labels * smooth_positives + smooth_negatives

    losses = nn.softmax_cross_entropy_with_logits(labels=onehot_labels,
                                                  logits=logits,
                                                  name="xentropy")
    return compute_weighted_loss(
        losses, weights, scope, loss_collection, reduction=reduction)


# TODO(ptucker): Merge this with similar method in metrics_impl. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:58,代碼來源:losses_impl.py

示例12: deprecated_flipped_softmax_cross_entropy_with_logits

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def deprecated_flipped_softmax_cross_entropy_with_logits(logits,
                                                         labels,
                                                         dim=-1,
                                                         name=None):
  """Computes softmax cross entropy between `logits` and `labels`.

  This function diffs from tf.nn.softmax_cross_entropy_with_logits only in the
  argument order.

  Measures the probability error in discrete classification tasks in which the
  classes are mutually exclusive (each entry is in exactly one class).  For
  example, each CIFAR-10 image is labeled with one and only one label: an image
  can be a dog or a truck, but not both.

  **NOTE:**  While the classes are mutually exclusive, their probabilities
  need not be.  All that is required is that each row of `labels` is
  a valid probability distribution.  If they are not, the computation of the
  gradient will be incorrect.

  If using exclusive `labels` (wherein one and only
  one class is true at a time), see `sparse_softmax_cross_entropy_with_logits`.

  **WARNING:** This op expects unscaled logits, since it performs a `softmax`
  on `logits` internally for efficiency.  Do not call this op with the
  output of `softmax`, as it will produce incorrect results.

  `logits` and `labels` must have the same shape `[batch_size, num_classes]`
  and the same dtype (either `float16`, `float32`, or `float64`).

  Args:
    logits: Unscaled log probabilities.
    labels: Each row `labels[i]` must be a valid probability distribution.
    dim: The class dimension. Defaulted to -1 which is the last dimension.
    name: A name for the operation (optional).

  Returns:
    A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the
    softmax cross entropy loss.
  """
  return nn.softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, dim=dim, name=name)


# TODO(b/33392402): Formally deprecate this API.
# After LSC (see b/33392402#comment1), this API will be deprecated and callers
# will be suggested to use the (updated version of)
# tf.nn.sparse_softmax_cross_entropy_with_logits. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:49,代碼來源:cross_entropy.py

示例13: softmax_cross_entropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def softmax_cross_entropy(
    logits, onehot_labels, weights=1.0, label_smoothing=0, scope=None):
  """Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits.

  `weights` acts as a coefficient for the loss. If a scalar is provided,
  then the loss is simply scaled by the given value. If `weights` is a
  tensor of size [`batch_size`], then the loss weights apply to each
  corresponding sample.

  If `label_smoothing` is nonzero, smooth the labels towards 1/num_classes:
      new_onehot_labels = onehot_labels * (1 - label_smoothing)
                          + label_smoothing / num_classes

  Args:
    logits: [batch_size, num_classes] logits outputs of the network .
    onehot_labels: [batch_size, num_classes] one-hot-encoded labels.
    weights: Coefficients for the loss. The tensor must be a scalar or a tensor
      of shape [batch_size].
    label_smoothing: If greater than 0 then smooth the labels.
    scope: the scope for the operations performed in computing the loss.

  Returns:
    A scalar `Tensor` representing the mean loss value.

  Raises:
    ValueError: If the shape of `logits` doesn't match that of `onehot_labels`
      or if the shape of `weights` is invalid or if `weights` is None.
  """
  with ops.name_scope(scope, "softmax_cross_entropy_loss",
                      [logits, onehot_labels, weights]) as scope:
    logits.get_shape().assert_is_compatible_with(onehot_labels.get_shape())

    onehot_labels = math_ops.cast(onehot_labels, logits.dtype)

    if label_smoothing > 0:
      num_classes = math_ops.cast(
          array_ops.shape(onehot_labels)[1], logits.dtype)
      smooth_positives = 1.0 - label_smoothing
      smooth_negatives = label_smoothing / num_classes
      onehot_labels = onehot_labels * smooth_positives + smooth_negatives

    losses = nn.softmax_cross_entropy_with_logits(labels=onehot_labels,
                                                  logits=logits,
                                                  name="xentropy")
    return compute_weighted_loss(losses, weights, scope=scope) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:47,代碼來源:loss_ops.py

示例14: softmax_cross_entropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def softmax_cross_entropy(
    onehot_labels, logits, weights=1.0, label_smoothing=0, scope=None,
    loss_collection=ops.GraphKeys.LOSSES):
  """Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits.

  `weights` acts as a coefficient for the loss. If a scalar is provided,
  then the loss is simply scaled by the given value. If `weights` is a
  tensor of shape `[batch_size]`, then the loss weights apply to each
  corresponding sample.

  If `label_smoothing` is nonzero, smooth the labels towards 1/num_classes:
      new_onehot_labels = onehot_labels * (1 - label_smoothing)
                          + label_smoothing / num_classes

  Args:
    onehot_labels: `[batch_size, num_classes]` target one-hot-encoded labels.
    logits: [batch_size, num_classes] logits outputs of the network .
    weights: Optional `Tensor` whose rank is either 0, or the same rank as
      `onehot_labels`, and must be broadcastable to `onehot_labels` (i.e., all
      dimensions must be either `1`, or the same as the corresponding `losses`
      dimension).
    label_smoothing: If greater than 0 then smooth the labels.
    scope: the scope for the operations performed in computing the loss.
    loss_collection: collection to which the loss will be added.

  Returns:
    A scalar `Tensor` representing the mean loss value.

  Raises:
    ValueError: If the shape of `logits` doesn't match that of `onehot_labels`
      or if the shape of `weights` is invalid or if `weights` is None.
  """
  with ops.name_scope(scope, "softmax_cross_entropy_loss",
                      (logits, onehot_labels, weights)) as scope:
    logits = ops.convert_to_tensor(logits)
    onehot_labels = math_ops.cast(onehot_labels, logits.dtype)
    logits.get_shape().assert_is_compatible_with(onehot_labels.get_shape())

    if label_smoothing > 0:
      num_classes = math_ops.cast(
          array_ops.shape(onehot_labels)[1], logits.dtype)
      smooth_positives = 1.0 - label_smoothing
      smooth_negatives = label_smoothing / num_classes
      onehot_labels = onehot_labels * smooth_positives + smooth_negatives

    losses = nn.softmax_cross_entropy_with_logits(labels=onehot_labels,
                                                  logits=logits,
                                                  name="xentropy")
    return compute_weighted_loss(losses, weights, scope, loss_collection)


# TODO(ptucker): Merge this with similar method in metrics_impl. 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:54,代碼來源:losses_impl.py

示例15: deprecated_flipped_sparse_softmax_cross_entropy_with_logits

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits [as 別名]
def deprecated_flipped_sparse_softmax_cross_entropy_with_logits(logits,
                                                                labels,
                                                                name=None):
  """Computes sparse softmax cross entropy between `logits` and `labels`.

  This function diffs from tf.nn.sparse_softmax_cross_entropy_with_logits only
  in the argument order.

  Measures the probability error in discrete classification tasks in which the
  classes are mutually exclusive (each entry is in exactly one class).  For
  example, each CIFAR-10 image is labeled with one and only one label: an image
  can be a dog or a truck, but not both.

  **NOTE:**  For this operation, the probability of a given label is considered
  exclusive.  That is, soft classes are not allowed, and the `labels` vector
  must provide a single specific index for the true class for each row of
  `logits` (each minibatch entry).  For soft softmax classification with
  a probability distribution for each entry, see
  `softmax_cross_entropy_with_logits`.

  **WARNING:** This op expects unscaled logits, since it performs a softmax
  on `logits` internally for efficiency.  Do not call this op with the
  output of `softmax`, as it will produce incorrect results.

  A common use case is to have logits of shape `[batch_size, num_classes]` and
  labels of shape `[batch_size]`. But higher dimensions are supported.

  Args:

    logits: Unscaled log probabilities of rank `r` and shape
      `[d_0, d_1, ..., d_{r-2}, num_classes]` and dtype `float32` or `float64`.
    labels: `Tensor` of shape `[d_0, d_1, ..., d_{r-2}]` and dtype `int32` or
      `int64`. Each entry in `labels` must be an index in `[0, num_classes)`.
      Other values will raise an exception when this op is run on CPU, and
      return `NaN` for corresponding corresponding loss and gradient rows
      on GPU.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of the same shape as `labels` and of the same type as `logits`
    with the softmax cross entropy loss.

  Raises:
    ValueError: If logits are scalars (need to have rank >= 1) or if the rank
      of the labels is not equal to the rank of the labels minus one.
  """
  return nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name=name)


# TODO(b/33392402): Formally deprecate this API.
# After LSC (see b/33392402#comment1), this API will be deprecated and callers
# will be suggested to use the (updated version of)
# tf.nn.sigmoid_cross_entropy_with_logits. 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:56,代碼來源:cross_entropy.py


注:本文中的tensorflow.python.ops.nn.softmax_cross_entropy_with_logits方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。