當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.sigmoid_cross_entropy_with_logits方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.nn.sigmoid_cross_entropy_with_logits方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.sigmoid_cross_entropy_with_logits方法的具體用法?Python nn.sigmoid_cross_entropy_with_logits怎麽用?Python nn.sigmoid_cross_entropy_with_logits使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.nn的用法示例。


在下文中一共展示了nn.sigmoid_cross_entropy_with_logits方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _log_prob

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_prob(self, event):
    event = self._maybe_assert_valid_sample(event)
    # TODO(jaana): The current sigmoid_cross_entropy_with_logits has
    # inconsistent  behavior for logits = inf/-inf.
    event = math_ops.cast(event, self.logits.dtype)
    logits = self.logits
    # sigmoid_cross_entropy_with_logits doesn't broadcast shape,
    # so we do this here.

    def _broadcast(logits, event):
      return (array_ops.ones_like(event) * logits,
              array_ops.ones_like(logits) * event)

    # First check static shape.
    if (event.get_shape().is_fully_defined() and
        logits.get_shape().is_fully_defined()):
      if event.get_shape() != logits.get_shape():
        logits, event = _broadcast(logits, event)
    else:
      logits, event = control_flow_ops.cond(
          distribution_util.same_dynamic_shape(logits, event),
          lambda: (logits, event),
          lambda: _broadcast(logits, event))
    return -nn.sigmoid_cross_entropy_with_logits(labels=event, logits=logits) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:bernoulli.py

示例2: binary_crossentropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def binary_crossentropy(output, target, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.

  Arguments:
      output: A tensor.
      target: A tensor with the same shape as `output`.
      from_logits: Whether `output` is expected to be a logits tensor.
          By default, we consider that `output`
          encodes a probability distribution.

  Returns:
      A tensor.
  """
  # Note: nn.softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # transform back to logits
    epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon, 1 - epsilon)
    output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:backend.py

示例3: _log_prob

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_prob(self, event):
    # TODO(jaana): The current sigmoid_cross_entropy_with_logits has
    # inconsistent  behavior for logits = inf/-inf.
    event = ops.convert_to_tensor(event, name="event")
    event = math_ops.cast(event, self.logits.dtype)
    logits = self.logits
    # sigmoid_cross_entropy_with_logits doesn't broadcast shape,
    # so we do this here.

    broadcast = lambda logits, event: (
        array_ops.ones_like(event) * logits,
        array_ops.ones_like(logits) * event)

    # First check static shape.
    if (event.get_shape().is_fully_defined() and
        logits.get_shape().is_fully_defined()):
      if event.get_shape() != logits.get_shape():
        logits, event = broadcast(logits, event)
    else:
      logits, event = control_flow_ops.cond(
          distribution_util.same_dynamic_shape(logits, event),
          lambda: (logits, event),
          lambda: broadcast(logits, event))
    return -nn.sigmoid_cross_entropy_with_logits(labels=event, logits=logits) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:26,代碼來源:bernoulli.py

示例4: _log_prob

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_prob(self, event):
    # TODO(jaana): The current sigmoid_cross_entropy_with_logits has
    # inconsistent  behavior for logits = inf/-inf.
    event = ops.convert_to_tensor(event, name="event")
    event = math_ops.cast(event, self.logits.dtype)
    logits = self.logits
    # sigmoid_cross_entropy_with_logits doesn't broadcast shape,
    # so we do this here.
    # TODO(b/30637701): Check dynamic shape, and don't broadcast if the
    # dynamic shapes are the same.
    if (not event.get_shape().is_fully_defined() or
        not logits.get_shape().is_fully_defined() or
        event.get_shape() != logits.get_shape()):
      logits = array_ops.ones_like(event) * logits
      event = array_ops.ones_like(logits) * event
    return -nn.sigmoid_cross_entropy_with_logits(logits, event) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:bernoulli.py

示例5: binary_crossentropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def binary_crossentropy(target, output, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.

  Arguments:
      target: A tensor with the same shape as `output`.
      output: A tensor.
      from_logits: Whether `output` is expected to be a logits tensor.
          By default, we consider that `output`
          encodes a probability distribution.

  Returns:
      A tensor.
  """
  # Note: nn.softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # transform back to logits
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:backend.py

示例6: _sigmoid_cross_entropy_loss

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _sigmoid_cross_entropy_loss(labels, logits, weights=None):
  with ops.name_scope(None, "sigmoid_cross_entropy_loss",
                      (logits, labels)) as name:
    # sigmoid_cross_entropy_with_logits requires [batch_size, n_classes] labels.
    loss = nn.sigmoid_cross_entropy_with_logits(
        labels=math_ops.to_float(labels), logits=logits, name=name)
    return _compute_weighted_loss(loss, weights) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:head.py

示例7: _log_loss_with_two_classes

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_loss_with_two_classes(logits, target):
  # sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
  if len(target.get_shape()) == 1:
    target = array_ops.expand_dims(target, dim=[1])
  loss_vec = nn.sigmoid_cross_entropy_with_logits(
      labels=math_ops.to_float(target), logits=logits)
  return loss_vec 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:target_column.py

示例8: _log_loss_with_two_classes

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_loss_with_two_classes(logits, labels):
  with ops.name_scope(None, "log_loss_with_two_classes",
                      (logits, labels)) as name:
    # sigmoid_cross_entropy_with_logits requires [batch_size, 1] labels.
    if len(labels.get_shape()) == 1:
      labels = array_ops.expand_dims(labels, dim=(1,))
    return nn.sigmoid_cross_entropy_with_logits(
        labels=math_ops.to_float(labels), logits=logits, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:10,代碼來源:head.py

示例9: _sigmoid_cross_entropy_loss

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _sigmoid_cross_entropy_loss(logits, labels):
  with ops.name_scope(None, "sigmoid_cross_entropy_loss",
                      (logits, labels)) as name:
    # sigmoid_cross_entropy_with_logits requires [batch_size, n_classes] labels.
    return nn.sigmoid_cross_entropy_with_logits(
        labels=math_ops.to_float(labels), logits=logits, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:8,代碼來源:head.py

示例10: _log_loss_with_two_classes

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_loss_with_two_classes(logits, labels):
  # sigmoid_cross_entropy_with_logits requires [batch_size, 1] labels.
  if len(labels.get_shape()) == 1:
    labels = array_ops.expand_dims(labels, dim=[1])
  loss_vec = nn.sigmoid_cross_entropy_with_logits(logits,
                                                  math_ops.to_float(labels))
  return loss_vec 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:head.py

示例11: _sigmoid_cross_entropy_loss

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _sigmoid_cross_entropy_loss(logits, labels):
  # sigmoid_cross_entropy_with_logits requires [batch_size, n_classes] labels.
  return nn.sigmoid_cross_entropy_with_logits(logits, math_ops.to_float(labels)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:5,代碼來源:head.py

示例12: _log_loss_with_two_classes

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_loss_with_two_classes(logits, target):
  # sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
  if len(target.get_shape()) == 1:
    target = array_ops.expand_dims(target, dim=[1])
  loss_vec = nn.sigmoid_cross_entropy_with_logits(logits,
                                                  math_ops.to_float(target))
  return loss_vec 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:target_column.py

示例13: create_loss

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def create_loss(self, features, mode, logits, labels):
    """See `Head`."""
    del mode, features  # Unused for this head.
    labels = _check_labels(_maybe_expand_dim(labels), self.logits_dimension)
    if self._label_vocabulary is not None:
      labels = lookup_ops.index_table_from_tensor(
          vocabulary_list=tuple(self._label_vocabulary),
          name='class_id_lookup').lookup(labels)
    labels = math_ops.to_float(labels)
    labels = _assert_range(labels, 2)
    return LossAndLabels(
        unweighted_loss=nn.sigmoid_cross_entropy_with_logits(
            labels=labels, logits=logits),
        processed_labels=labels) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:16,代碼來源:head.py

示例14: _log_prob

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_prob(self, event):
    if self.validate_args:
      event = distribution_util.embed_check_integer_casting_closed(
          event, target_dtype=dtypes.bool)

    # TODO(jaana): The current sigmoid_cross_entropy_with_logits has
    # inconsistent behavior for logits = inf/-inf.
    event = math_ops.cast(event, self.logits.dtype)
    logits = self.logits
    # sigmoid_cross_entropy_with_logits doesn't broadcast shape,
    # so we do this here.

    def _broadcast(logits, event):
      return (array_ops.ones_like(event) * logits,
              array_ops.ones_like(logits) * event)

    # First check static shape.
    if (event.get_shape().is_fully_defined() and
        logits.get_shape().is_fully_defined()):
      if event.get_shape() != logits.get_shape():
        logits, event = _broadcast(logits, event)
    else:
      logits, event = control_flow_ops.cond(
          distribution_util.same_dynamic_shape(logits, event),
          lambda: (logits, event),
          lambda: _broadcast(logits, event))
    return -nn.sigmoid_cross_entropy_with_logits(labels=event, logits=logits) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:29,代碼來源:bernoulli.py

示例15: sigmoid_cross_entropy

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def sigmoid_cross_entropy(
    multi_class_labels, logits, weights=1.0, label_smoothing=0, scope=None,
    loss_collection=ops.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
  """Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.

  `weights` acts as a coefficient for the loss. If a scalar is provided,
  then the loss is simply scaled by the given value. If `weights` is a
  tensor of shape `[batch_size]`, then the loss weights apply to each
  corresponding sample.

  If `label_smoothing` is nonzero, smooth the labels towards 1/2:

      new_multiclass_labels = multiclass_labels * (1 - label_smoothing)
                              + 0.5 * label_smoothing

  Args:
    multi_class_labels: `[batch_size, num_classes]` target integer labels in
      `(0, 1)`.
    logits: Float `[batch_size, num_classes]` logits outputs of the network.
    weights: Optional `Tensor` whose rank is either 0, or the same rank as
      `labels`, and must be broadcastable to `labels` (i.e., all dimensions must
      be either `1`, or the same as the corresponding `losses` dimension).
    label_smoothing: If greater than `0` then smooth the labels.
    scope: The scope for the operations performed in computing the loss.
    loss_collection: collection to which the loss will be added.
    reduction: Type of reduction to apply to loss.

  Returns:
    Weighted loss `Tensor` of the same type as `logits`. If `reduction` is
    `NONE`, this has the same shape as `logits`; otherwise, it is scalar.

  Raises:
    ValueError: If the shape of `logits` doesn't match that of
      `multi_class_labels` or if the shape of `weights` is invalid, or if
      `weights` is None.
  """
  with ops.name_scope(scope, "sigmoid_cross_entropy_loss",
                      (logits, multi_class_labels, weights)) as scope:
    logits = ops.convert_to_tensor(logits)
    logging.info("logits.dtype=%s.", logits.dtype)
    multi_class_labels = math_ops.cast(multi_class_labels, logits.dtype)
    logging.info("multi_class_labels.dtype=%s.", multi_class_labels.dtype)
    logits.get_shape().assert_is_compatible_with(multi_class_labels.get_shape())

    if label_smoothing > 0:
      multi_class_labels = (multi_class_labels * (1 - label_smoothing) +
                            0.5 * label_smoothing)

    losses = nn.sigmoid_cross_entropy_with_logits(labels=multi_class_labels,
                                                  logits=logits,
                                                  name="xentropy")
    logging.info("losses.dtype=%s.", losses.dtype)
    return compute_weighted_loss(
        losses, weights, scope, loss_collection, reduction=reduction) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:57,代碼來源:losses_impl.py


注:本文中的tensorflow.python.ops.nn.sigmoid_cross_entropy_with_logits方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。