本文整理匯總了Python中tensorflow.python.ops.nn.sigmoid_cross_entropy_with_logits方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.sigmoid_cross_entropy_with_logits方法的具體用法?Python nn.sigmoid_cross_entropy_with_logits怎麽用?Python nn.sigmoid_cross_entropy_with_logits使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.nn
的用法示例。
在下文中一共展示了nn.sigmoid_cross_entropy_with_logits方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _log_prob
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_prob(self, event):
event = self._maybe_assert_valid_sample(event)
# TODO(jaana): The current sigmoid_cross_entropy_with_logits has
# inconsistent behavior for logits = inf/-inf.
event = math_ops.cast(event, self.logits.dtype)
logits = self.logits
# sigmoid_cross_entropy_with_logits doesn't broadcast shape,
# so we do this here.
def _broadcast(logits, event):
return (array_ops.ones_like(event) * logits,
array_ops.ones_like(logits) * event)
# First check static shape.
if (event.get_shape().is_fully_defined() and
logits.get_shape().is_fully_defined()):
if event.get_shape() != logits.get_shape():
logits, event = _broadcast(logits, event)
else:
logits, event = control_flow_ops.cond(
distribution_util.same_dynamic_shape(logits, event),
lambda: (logits, event),
lambda: _broadcast(logits, event))
return -nn.sigmoid_cross_entropy_with_logits(labels=event, logits=logits)
示例2: binary_crossentropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def binary_crossentropy(output, target, from_logits=False):
"""Binary crossentropy between an output tensor and a target tensor.
Arguments:
output: A tensor.
target: A tensor with the same shape as `output`.
from_logits: Whether `output` is expected to be a logits tensor.
By default, we consider that `output`
encodes a probability distribution.
Returns:
A tensor.
"""
# Note: nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# transform back to logits
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon, 1 - epsilon)
output = math_ops.log(output / (1 - output))
return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
示例3: _log_prob
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_prob(self, event):
# TODO(jaana): The current sigmoid_cross_entropy_with_logits has
# inconsistent behavior for logits = inf/-inf.
event = ops.convert_to_tensor(event, name="event")
event = math_ops.cast(event, self.logits.dtype)
logits = self.logits
# sigmoid_cross_entropy_with_logits doesn't broadcast shape,
# so we do this here.
broadcast = lambda logits, event: (
array_ops.ones_like(event) * logits,
array_ops.ones_like(logits) * event)
# First check static shape.
if (event.get_shape().is_fully_defined() and
logits.get_shape().is_fully_defined()):
if event.get_shape() != logits.get_shape():
logits, event = broadcast(logits, event)
else:
logits, event = control_flow_ops.cond(
distribution_util.same_dynamic_shape(logits, event),
lambda: (logits, event),
lambda: broadcast(logits, event))
return -nn.sigmoid_cross_entropy_with_logits(labels=event, logits=logits)
示例4: _log_prob
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_prob(self, event):
# TODO(jaana): The current sigmoid_cross_entropy_with_logits has
# inconsistent behavior for logits = inf/-inf.
event = ops.convert_to_tensor(event, name="event")
event = math_ops.cast(event, self.logits.dtype)
logits = self.logits
# sigmoid_cross_entropy_with_logits doesn't broadcast shape,
# so we do this here.
# TODO(b/30637701): Check dynamic shape, and don't broadcast if the
# dynamic shapes are the same.
if (not event.get_shape().is_fully_defined() or
not logits.get_shape().is_fully_defined() or
event.get_shape() != logits.get_shape()):
logits = array_ops.ones_like(event) * logits
event = array_ops.ones_like(logits) * event
return -nn.sigmoid_cross_entropy_with_logits(logits, event)
示例5: binary_crossentropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def binary_crossentropy(target, output, from_logits=False):
"""Binary crossentropy between an output tensor and a target tensor.
Arguments:
target: A tensor with the same shape as `output`.
output: A tensor.
from_logits: Whether `output` is expected to be a logits tensor.
By default, we consider that `output`
encodes a probability distribution.
Returns:
A tensor.
"""
# Note: nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# transform back to logits
epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
output = math_ops.log(output / (1 - output))
return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:backend.py
示例6: _sigmoid_cross_entropy_loss
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _sigmoid_cross_entropy_loss(labels, logits, weights=None):
with ops.name_scope(None, "sigmoid_cross_entropy_loss",
(logits, labels)) as name:
# sigmoid_cross_entropy_with_logits requires [batch_size, n_classes] labels.
loss = nn.sigmoid_cross_entropy_with_logits(
labels=math_ops.to_float(labels), logits=logits, name=name)
return _compute_weighted_loss(loss, weights)
示例7: _log_loss_with_two_classes
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_loss_with_two_classes(logits, target):
# sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
if len(target.get_shape()) == 1:
target = array_ops.expand_dims(target, dim=[1])
loss_vec = nn.sigmoid_cross_entropy_with_logits(
labels=math_ops.to_float(target), logits=logits)
return loss_vec
示例8: _log_loss_with_two_classes
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_loss_with_two_classes(logits, labels):
with ops.name_scope(None, "log_loss_with_two_classes",
(logits, labels)) as name:
# sigmoid_cross_entropy_with_logits requires [batch_size, 1] labels.
if len(labels.get_shape()) == 1:
labels = array_ops.expand_dims(labels, dim=(1,))
return nn.sigmoid_cross_entropy_with_logits(
labels=math_ops.to_float(labels), logits=logits, name=name)
示例9: _sigmoid_cross_entropy_loss
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _sigmoid_cross_entropy_loss(logits, labels):
with ops.name_scope(None, "sigmoid_cross_entropy_loss",
(logits, labels)) as name:
# sigmoid_cross_entropy_with_logits requires [batch_size, n_classes] labels.
return nn.sigmoid_cross_entropy_with_logits(
labels=math_ops.to_float(labels), logits=logits, name=name)
示例10: _log_loss_with_two_classes
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_loss_with_two_classes(logits, labels):
# sigmoid_cross_entropy_with_logits requires [batch_size, 1] labels.
if len(labels.get_shape()) == 1:
labels = array_ops.expand_dims(labels, dim=[1])
loss_vec = nn.sigmoid_cross_entropy_with_logits(logits,
math_ops.to_float(labels))
return loss_vec
示例11: _sigmoid_cross_entropy_loss
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _sigmoid_cross_entropy_loss(logits, labels):
# sigmoid_cross_entropy_with_logits requires [batch_size, n_classes] labels.
return nn.sigmoid_cross_entropy_with_logits(logits, math_ops.to_float(labels))
示例12: _log_loss_with_two_classes
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_loss_with_two_classes(logits, target):
# sigmoid_cross_entropy_with_logits requires [batch_size, 1] target.
if len(target.get_shape()) == 1:
target = array_ops.expand_dims(target, dim=[1])
loss_vec = nn.sigmoid_cross_entropy_with_logits(logits,
math_ops.to_float(target))
return loss_vec
示例13: create_loss
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def create_loss(self, features, mode, logits, labels):
"""See `Head`."""
del mode, features # Unused for this head.
labels = _check_labels(_maybe_expand_dim(labels), self.logits_dimension)
if self._label_vocabulary is not None:
labels = lookup_ops.index_table_from_tensor(
vocabulary_list=tuple(self._label_vocabulary),
name='class_id_lookup').lookup(labels)
labels = math_ops.to_float(labels)
labels = _assert_range(labels, 2)
return LossAndLabels(
unweighted_loss=nn.sigmoid_cross_entropy_with_logits(
labels=labels, logits=logits),
processed_labels=labels)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:16,代碼來源:head.py
示例14: _log_prob
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def _log_prob(self, event):
if self.validate_args:
event = distribution_util.embed_check_integer_casting_closed(
event, target_dtype=dtypes.bool)
# TODO(jaana): The current sigmoid_cross_entropy_with_logits has
# inconsistent behavior for logits = inf/-inf.
event = math_ops.cast(event, self.logits.dtype)
logits = self.logits
# sigmoid_cross_entropy_with_logits doesn't broadcast shape,
# so we do this here.
def _broadcast(logits, event):
return (array_ops.ones_like(event) * logits,
array_ops.ones_like(logits) * event)
# First check static shape.
if (event.get_shape().is_fully_defined() and
logits.get_shape().is_fully_defined()):
if event.get_shape() != logits.get_shape():
logits, event = _broadcast(logits, event)
else:
logits, event = control_flow_ops.cond(
distribution_util.same_dynamic_shape(logits, event),
lambda: (logits, event),
lambda: _broadcast(logits, event))
return -nn.sigmoid_cross_entropy_with_logits(labels=event, logits=logits)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:29,代碼來源:bernoulli.py
示例15: sigmoid_cross_entropy
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits [as 別名]
def sigmoid_cross_entropy(
multi_class_labels, logits, weights=1.0, label_smoothing=0, scope=None,
loss_collection=ops.GraphKeys.LOSSES,
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
"""Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.
`weights` acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If `weights` is a
tensor of shape `[batch_size]`, then the loss weights apply to each
corresponding sample.
If `label_smoothing` is nonzero, smooth the labels towards 1/2:
new_multiclass_labels = multiclass_labels * (1 - label_smoothing)
+ 0.5 * label_smoothing
Args:
multi_class_labels: `[batch_size, num_classes]` target integer labels in
`(0, 1)`.
logits: Float `[batch_size, num_classes]` logits outputs of the network.
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`labels`, and must be broadcastable to `labels` (i.e., all dimensions must
be either `1`, or the same as the corresponding `losses` dimension).
label_smoothing: If greater than `0` then smooth the labels.
scope: The scope for the operations performed in computing the loss.
loss_collection: collection to which the loss will be added.
reduction: Type of reduction to apply to loss.
Returns:
Weighted loss `Tensor` of the same type as `logits`. If `reduction` is
`NONE`, this has the same shape as `logits`; otherwise, it is scalar.
Raises:
ValueError: If the shape of `logits` doesn't match that of
`multi_class_labels` or if the shape of `weights` is invalid, or if
`weights` is None.
"""
with ops.name_scope(scope, "sigmoid_cross_entropy_loss",
(logits, multi_class_labels, weights)) as scope:
logits = ops.convert_to_tensor(logits)
logging.info("logits.dtype=%s.", logits.dtype)
multi_class_labels = math_ops.cast(multi_class_labels, logits.dtype)
logging.info("multi_class_labels.dtype=%s.", multi_class_labels.dtype)
logits.get_shape().assert_is_compatible_with(multi_class_labels.get_shape())
if label_smoothing > 0:
multi_class_labels = (multi_class_labels * (1 - label_smoothing) +
0.5 * label_smoothing)
losses = nn.sigmoid_cross_entropy_with_logits(labels=multi_class_labels,
logits=logits,
name="xentropy")
logging.info("losses.dtype=%s.", losses.dtype)
return compute_weighted_loss(
losses, weights, scope, loss_collection, reduction=reduction)