當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.convolution方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.nn.convolution方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.convolution方法的具體用法?Python nn.convolution怎麽用?Python nn.convolution使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.nn的用法示例。


在下文中一共展示了nn.convolution方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: convolution1d

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def convolution1d(inputs,
                  num_outputs,
                  kernel_size,
                  stride=1,
                  padding='SAME',
                  data_format=None,
                  rate=1,
                  activation_fn=nn.relu,
                  normalizer_fn=None,
                  normalizer_params=None,
                  weights_initializer=initializers.xavier_initializer(),
                  weights_regularizer=None,
                  biases_initializer=init_ops.zeros_initializer(),
                  biases_regularizer=None,
                  reuse=None,
                  variables_collections=None,
                  outputs_collections=None,
                  trainable=True,
                  scope=None):
  return convolution(
      inputs,
      num_outputs,
      kernel_size,
      stride,
      padding,
      data_format,
      rate,
      activation_fn,
      normalizer_fn,
      normalizer_params,
      weights_initializer,
      weights_regularizer,
      biases_initializer,
      biases_regularizer,
      reuse,
      variables_collections,
      outputs_collections,
      trainable,
      scope,
      conv_dims=1) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:42,代碼來源:layers.py

示例2: convolution2d

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def convolution2d(inputs,
                  num_outputs,
                  kernel_size,
                  stride=1,
                  padding='SAME',
                  data_format=None,
                  rate=1,
                  activation_fn=nn.relu,
                  normalizer_fn=None,
                  normalizer_params=None,
                  weights_initializer=initializers.xavier_initializer(),
                  weights_regularizer=None,
                  biases_initializer=init_ops.zeros_initializer(),
                  biases_regularizer=None,
                  reuse=None,
                  variables_collections=None,
                  outputs_collections=None,
                  trainable=True,
                  scope=None):
  return convolution(
      inputs,
      num_outputs,
      kernel_size,
      stride,
      padding,
      data_format,
      rate,
      activation_fn,
      normalizer_fn,
      normalizer_params,
      weights_initializer,
      weights_regularizer,
      biases_initializer,
      biases_regularizer,
      reuse,
      variables_collections,
      outputs_collections,
      trainable,
      scope,
      conv_dims=2) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:42,代碼來源:layers.py

示例3: convolution3d

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def convolution3d(inputs,
                  num_outputs,
                  kernel_size,
                  stride=1,
                  padding='SAME',
                  data_format=None,
                  rate=1,
                  activation_fn=nn.relu,
                  normalizer_fn=None,
                  normalizer_params=None,
                  weights_initializer=initializers.xavier_initializer(),
                  weights_regularizer=None,
                  biases_initializer=init_ops.zeros_initializer(),
                  biases_regularizer=None,
                  reuse=None,
                  variables_collections=None,
                  outputs_collections=None,
                  trainable=True,
                  scope=None):
  return convolution(
      inputs,
      num_outputs,
      kernel_size,
      stride,
      padding,
      data_format,
      rate,
      activation_fn,
      normalizer_fn,
      normalizer_params,
      weights_initializer,
      weights_regularizer,
      biases_initializer,
      biases_regularizer,
      reuse,
      variables_collections,
      outputs_collections,
      trainable,
      scope,
      conv_dims=3) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:42,代碼來源:layers.py

示例4: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def call(self, inputs):
    inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
    ndim = self._input_rank

    shape = self.gamma.get_shape().as_list()
    gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)

    # Compute normalization pool.
    if self.data_format == 'channels_first':
      norm_pool = nn.convolution(
          math_ops.square(inputs),
          gamma,
          'VALID',
          data_format='NC' + 'DHW' [-(ndim - 2):])
      if ndim == 3:
        norm_pool = array_ops.expand_dims(norm_pool, 2)
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
        norm_pool = array_ops.squeeze(norm_pool, [2])
      elif ndim == 5:
        shape = array_ops.shape(norm_pool)
        norm_pool = array_ops.reshape(norm_pool, shape[:3] + [-1])
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
        norm_pool = array_ops.reshape(norm_pool, shape)
      else:  # ndim == 4
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
    else:  # channels_last
      norm_pool = nn.convolution(math_ops.square(inputs), gamma, 'VALID')
      norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NHWC')
    norm_pool = math_ops.sqrt(norm_pool)

    if self.inverse:
      outputs = inputs * norm_pool
    else:
      outputs = inputs / norm_pool
    outputs.set_shape(inputs.get_shape())
    return outputs 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:38,代碼來源:layers.py

示例5: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def call(self, inputs):
    outputs = nn.convolution(
        input=inputs,
        filter=self.kernel,
        dilation_rate=self.dilation_rate,
        strides=self.strides,
        padding=self.padding.upper(),
        data_format=utils.convert_data_format(self.data_format, self.rank + 2))

    if self.bias is not None:
      if self.data_format == 'channels_first':
        # bias_add only supports NHWC.
        # TODO(fchollet): remove this when `bias_add` is feature-complete.
        if self.rank == 1:
          bias = array_ops.reshape(self.bias, (1, self.filters, 1))
          outputs += bias
        if self.rank == 2:
          bias = array_ops.reshape(self.bias, (1, self.filters, 1, 1))
          outputs += bias
        if self.rank == 3:
          # As of Mar 2017, direct addition is significantly slower than
          # bias_add when computing gradients. To use bias_add, we collapse Z
          # and Y into a single dimension to obtain a 4D input tensor.
          outputs_shape = outputs.shape.as_list()
          outputs_4d = array_ops.reshape(outputs,
                                         [outputs_shape[0], outputs_shape[1],
                                          outputs_shape[2] * outputs_shape[3],
                                          outputs_shape[4]])
          outputs_4d = nn.bias_add(outputs_4d, self.bias, data_format='NCHW')
          outputs = array_ops.reshape(outputs_4d, outputs_shape)
      else:
        outputs = nn.bias_add(outputs, self.bias, data_format='NHWC')

    if self.activation is not None:
      return self.activation(outputs)
    return outputs 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:convolutional.py

示例6: conv1d

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def conv1d(x,
           kernel,
           strides=1,
           padding='valid',
           data_format=None,
           dilation_rate=1):
  """1D convolution.

  Arguments:
      x: Tensor or variable.
      kernel: kernel tensor.
      strides: stride integer.
      padding: string, `"same"`, `"causal"` or `"valid"`.
      data_format: string, one of "channels_last", "channels_first".
      dilation_rate: integer dilate rate.

  Returns:
      A tensor, result of 1D convolution.
  """
  kernel_shape = kernel.get_shape().as_list()
  if padding == 'causal':
    # causal (dilated) convolution:
    left_pad = dilation_rate * (kernel_shape[0] - 1)
    x = temporal_padding(x, (left_pad, 0))
    padding = 'valid'
  padding = _preprocess_padding(padding)
  if data_format == 'channels_last':
    tf_data_format = 'NWC'
  else:
    tf_data_format = 'NCW'
  x = nn.convolution(
      input=x,
      filter=kernel,
      dilation_rate=(dilation_rate,),
      strides=(strides,),
      padding=padding,
      data_format=tf_data_format)
  return x 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:40,代碼來源:backend.py

示例7: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def call(self, inputs):
    outputs = nn.convolution(
        input=inputs,
        filter=self.kernel,
        dilation_rate=self.dilation_rate,
        strides=self.strides,
        padding=self.padding.upper(),
        data_format=utils.convert_data_format(self.data_format, self.rank + 2))
    if self.bias is not None:
      if self.rank != 2 and self.data_format == 'channels_first':
        # bias_add does not support channels_first for non-4D inputs.
        if self.rank == 1:
          bias = array_ops.reshape(self.bias, (1, self.filters, 1))
        if self.rank == 3:
          bias = array_ops.reshape(self.bias, (1, self.filters, 1, 1))
        outputs += bias
      else:
        outputs = nn.bias_add(
            outputs,
            self.bias,
            data_format=utils.convert_data_format(self.data_format, 4))
        # Note that we passed rank=4 because bias_add will only accept
        # NHWC and NCWH even if the rank of the inputs is 3 or 5.

    if self.activation is not None:
      return self.activation(outputs)
    return outputs 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:29,代碼來源:convolutional.py

示例8: _conv_class_factory

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def _conv_class_factory(name, rank):
  """Subclass from _SignalConv, fixing convolution rank."""
  def init(self, *args, **kwargs):
    return _SignalConv.__init__(self, rank, *args, **kwargs)
  clsdict = {"__init__": init,
             "__doc__": _SignalConv.__doc__.format(rank=rank)}
  return type(name, (_SignalConv,), clsdict)


# pylint:disable=invalid-name
# Subclass _SignalConv for each dimensionality. 
開發者ID:mauriceqch,項目名稱:pcc_geo_cnn,代碼行數:13,代碼來源:signal_conv.py

示例9: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def call(self, inputs):
    inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
    ndim = self._input_rank

    if self.rectify:
      inputs = nn.relu(inputs)

    # Compute normalization pool.
    if ndim == 2:
      norm_pool = math_ops.matmul(math_ops.square(inputs), self.gamma)
      norm_pool = nn.bias_add(norm_pool, self.beta)
    elif self.data_format == "channels_last" and ndim <= 5:
      shape = self.gamma.shape.as_list()
      gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)
      norm_pool = nn.convolution(math_ops.square(inputs), gamma, "VALID")
      norm_pool = nn.bias_add(norm_pool, self.beta)
    else:  # generic implementation
      # This puts channels in the last dimension regardless of input.
      norm_pool = math_ops.tensordot(
          math_ops.square(inputs), self.gamma, [[self._channel_axis()], [0]])
      norm_pool += self.beta
      if self.data_format == "channels_first":
        # Return to channels_first format if necessary.
        axes = list(range(ndim - 1))
        axes.insert(1, ndim - 1)
        norm_pool = array_ops.transpose(norm_pool, axes)

    if self.inverse:
      norm_pool = math_ops.sqrt(norm_pool)
    else:
      norm_pool = math_ops.rsqrt(norm_pool)
    outputs = inputs * norm_pool

    if not context.executing_eagerly():
      outputs.set_shape(self.compute_output_shape(inputs.shape))
    return outputs 
開發者ID:mauriceqch,項目名稱:pcc_geo_cnn,代碼行數:38,代碼來源:gdn.py

示例10: depthwise_conv2d

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid',
                     data_format=None, dilation_rate=(1, 1)):
  """2D convolution with separable filters.

  Arguments:
    x: input tensor
    depthwise_kernel: convolution kernel for the depthwise convolution.
    strides: strides tuple (length 2).
    padding: string, `"same"` or `"valid"`.
    data_format: string, `"channels_last"` or `"channels_first"`.
    dilation_rate: tuple of integers,
        dilation rates for the separable convolution.

  Returns:
    Output tensor.

  Raises:
    ValueError: if `data_format` is neither `channels_last`
      or `channels_first`.
  """
  if data_format is None:
    data_format = image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Unknown data_format ' + str(data_format))

  x = _preprocess_conv2d_input(x, data_format)
  padding = _preprocess_padding(padding)
  strides = (1,) + strides + (1,)

  x = nn.depthwise_conv2d(x, depthwise_kernel,
                          strides=strides,
                          padding=padding,
                          rate=dilation_rate)
  return _postprocess_conv2d_output(x, data_format) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:36,代碼來源:backend.py

示例11: local_conv1d

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None):
  """Apply 1D conv with un-shared weights.

  Arguments:
      inputs: 3D tensor with shape: (batch_size, steps, input_dim)
      kernel: the unshared weight for convolution,
              with shape (output_length, feature_dim, filters)
      kernel_size: a tuple of a single integer,
                   specifying the length of the 1D convolution window
      strides: a tuple of a single integer,
               specifying the stride length of the convolution
      data_format: the data format, channels_first or channels_last

  Returns:
      the tensor after 1d conv with un-shared weights, with shape (batch_size,
      output_length, filters)

  Raises:
      ValueError: if `data_format` is neither `channels_last` or
      `channels_first`.
  """
  if data_format is None:
    data_format = image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Unknown data_format ' + str(data_format))

  stride = strides[0]
  kernel_shape = int_shape(kernel)
  output_length = kernel_shape[0]
  feature_dim = kernel_shape[1]

  xs = []
  for i in range(output_length):
    slice_length = slice(i * stride, i * stride + kernel_size[0])
    xs.append(reshape(inputs[:, slice_length, :], (1, -1, feature_dim)))
  x_aggregate = concatenate(xs, axis=0)
  # Shape: `(output_length, batch_size, filters)`.
  output = batch_dot(x_aggregate, kernel)
  return permute_dimensions(output, (1, 0, 2)) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:41,代碼來源:backend.py

示例12: conv2d

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def conv2d(x,
           kernel,
           strides=(1, 1),
           padding='valid',
           data_format=None,
           dilation_rate=(1, 1)):
  """2D convolution.

  Arguments:
      x: Tensor or variable.
      kernel: kernel tensor.
      strides: strides tuple.
      padding: string, `"same"` or `"valid"`.
      data_format: `"channels_last"` or `"channels_first"`.
          Whether to use Theano or TensorFlow data format
          for inputs/kernels/ouputs.
      dilation_rate: tuple of 2 integers.

  Returns:
      A tensor, result of 2D convolution.

  Raises:
      ValueError: if `data_format` is neither `channels_last` or
      `channels_first`.
  """
  if data_format is None:
    data_format = image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Unknown data_format ' + str(data_format))

  # With 4d inputs, nn.convolution only supports
  # data_format NHWC, so we transpose the inputs
  # in case we are in data_format channels_first.
  x = _preprocess_conv2d_input(x, data_format)
  padding = _preprocess_padding(padding)
  x = nn.convolution(
      input=x,
      filter=kernel,
      dilation_rate=dilation_rate,
      strides=strides,
      padding=padding,
      data_format='NHWC')
  return _postprocess_conv2d_output(x, data_format) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:45,代碼來源:backend.py

示例13: conv2d_transpose

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def conv2d_transpose(x,
                     kernel,
                     output_shape,
                     strides=(1, 1),
                     padding='valid',
                     data_format=None):
  """2D deconvolution (i.e.

  transposed convolution).

  Arguments:
      x: Tensor or variable.
      kernel: kernel tensor.
      output_shape: 1D int tensor for the output shape.
      strides: strides tuple.
      padding: string, `"same"` or `"valid"`.
      data_format: `"channels_last"` or `"channels_first"`.
          Whether to use Theano or TensorFlow data format
          for inputs/kernels/ouputs.

  Returns:
      A tensor, result of transposed 2D convolution.

  Raises:
      ValueError: if `data_format` is neither `channels_last` or
      `channels_first`.
  """
  if data_format is None:
    data_format = image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Unknown data_format ' + str(data_format))
  if isinstance(output_shape, (tuple, list)):
    output_shape = array_ops.stack(output_shape)

  x = _preprocess_conv2d_input(x, data_format)
  output_shape = _preprocess_deconv_output_shape(x, output_shape, data_format)
  padding = _preprocess_padding(padding)
  strides = (1,) + strides + (1,)

  x = nn.conv2d_transpose(x, kernel, output_shape, strides, padding=padding)
  x = _postprocess_conv2d_output(x, data_format)
  return x 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:44,代碼來源:backend.py

示例14: separable_conv2d

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def separable_conv2d(x,
                     depthwise_kernel,
                     pointwise_kernel,
                     strides=(1, 1),
                     padding='valid',
                     data_format=None,
                     dilation_rate=(1, 1)):
  """2D convolution with separable filters.

  Arguments:
      x: input tensor
      depthwise_kernel: convolution kernel for the depthwise convolution.
      pointwise_kernel: kernel for the 1x1 convolution.
      strides: strides tuple (length 2).
      padding: padding mode, "valid" or "same".
      data_format: data format, "channels_first" or "channels_last".
      dilation_rate: tuple of integers,
          dilation rates for the separable convolution.

  Returns:
      Output tensor.

  Raises:
      ValueError: if `data_format` is neither `channels_last` or
      `channels_first`.
  """
  if data_format is None:
    data_format = image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Unknown data_format ' + str(data_format))

  x = _preprocess_conv2d_input(x, data_format)
  padding = _preprocess_padding(padding)
  strides = (1,) + strides + (1,)

  x = nn.separable_conv2d(
      x,
      depthwise_kernel,
      pointwise_kernel,
      strides=strides,
      padding=padding,
      rate=dilation_rate)
  return _postprocess_conv2d_output(x, data_format) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:45,代碼來源:backend.py

示例15: conv2d

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def conv2d(x,
           kernel,
           strides=(1, 1),
           padding='valid',
           data_format=None,
           dilation_rate=(1, 1)):
  """2D convolution.

  Arguments:
      x: Tensor or variable.
      kernel: kernel tensor.
      strides: strides tuple.
      padding: string, `"same"` or `"valid"`.
      data_format: `"channels_last"` or `"channels_first"`.
          Whether to use Theano or TensorFlow data format
          for inputs/kernels/outputs.
      dilation_rate: tuple of 2 integers.

  Returns:
      A tensor, result of 2D convolution.

  Raises:
      ValueError: if `data_format` is neither `channels_last` or
      `channels_first`.
  """
  if data_format is None:
    data_format = image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Unknown data_format ' + str(data_format))

  # With 4d inputs, nn.convolution only supports
  # data_format NHWC, so we transpose the inputs
  # in case we are in data_format channels_first.
  x = _preprocess_conv2d_input(x, data_format)
  padding = _preprocess_padding(padding)
  x = nn.convolution(
      input=x,
      filter=kernel,
      dilation_rate=dilation_rate,
      strides=strides,
      padding=padding,
      data_format='NHWC')
  return _postprocess_conv2d_output(x, data_format) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:45,代碼來源:backend.py


注:本文中的tensorflow.python.ops.nn.convolution方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。