本文整理匯總了Python中tensorflow.python.ops.nn.convolution方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.convolution方法的具體用法?Python nn.convolution怎麽用?Python nn.convolution使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.nn
的用法示例。
在下文中一共展示了nn.convolution方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: convolution1d
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def convolution1d(inputs,
num_outputs,
kernel_size,
stride=1,
padding='SAME',
data_format=None,
rate=1,
activation_fn=nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=init_ops.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None):
return convolution(
inputs,
num_outputs,
kernel_size,
stride,
padding,
data_format,
rate,
activation_fn,
normalizer_fn,
normalizer_params,
weights_initializer,
weights_regularizer,
biases_initializer,
biases_regularizer,
reuse,
variables_collections,
outputs_collections,
trainable,
scope,
conv_dims=1)
示例2: convolution2d
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def convolution2d(inputs,
num_outputs,
kernel_size,
stride=1,
padding='SAME',
data_format=None,
rate=1,
activation_fn=nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=init_ops.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None):
return convolution(
inputs,
num_outputs,
kernel_size,
stride,
padding,
data_format,
rate,
activation_fn,
normalizer_fn,
normalizer_params,
weights_initializer,
weights_regularizer,
biases_initializer,
biases_regularizer,
reuse,
variables_collections,
outputs_collections,
trainable,
scope,
conv_dims=2)
示例3: convolution3d
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def convolution3d(inputs,
num_outputs,
kernel_size,
stride=1,
padding='SAME',
data_format=None,
rate=1,
activation_fn=nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=init_ops.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None):
return convolution(
inputs,
num_outputs,
kernel_size,
stride,
padding,
data_format,
rate,
activation_fn,
normalizer_fn,
normalizer_params,
weights_initializer,
weights_regularizer,
biases_initializer,
biases_regularizer,
reuse,
variables_collections,
outputs_collections,
trainable,
scope,
conv_dims=3)
示例4: call
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def call(self, inputs):
inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
ndim = self._input_rank
shape = self.gamma.get_shape().as_list()
gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)
# Compute normalization pool.
if self.data_format == 'channels_first':
norm_pool = nn.convolution(
math_ops.square(inputs),
gamma,
'VALID',
data_format='NC' + 'DHW' [-(ndim - 2):])
if ndim == 3:
norm_pool = array_ops.expand_dims(norm_pool, 2)
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
norm_pool = array_ops.squeeze(norm_pool, [2])
elif ndim == 5:
shape = array_ops.shape(norm_pool)
norm_pool = array_ops.reshape(norm_pool, shape[:3] + [-1])
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
norm_pool = array_ops.reshape(norm_pool, shape)
else: # ndim == 4
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
else: # channels_last
norm_pool = nn.convolution(math_ops.square(inputs), gamma, 'VALID')
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NHWC')
norm_pool = math_ops.sqrt(norm_pool)
if self.inverse:
outputs = inputs * norm_pool
else:
outputs = inputs / norm_pool
outputs.set_shape(inputs.get_shape())
return outputs
示例5: call
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def call(self, inputs):
outputs = nn.convolution(
input=inputs,
filter=self.kernel,
dilation_rate=self.dilation_rate,
strides=self.strides,
padding=self.padding.upper(),
data_format=utils.convert_data_format(self.data_format, self.rank + 2))
if self.bias is not None:
if self.data_format == 'channels_first':
# bias_add only supports NHWC.
# TODO(fchollet): remove this when `bias_add` is feature-complete.
if self.rank == 1:
bias = array_ops.reshape(self.bias, (1, self.filters, 1))
outputs += bias
if self.rank == 2:
bias = array_ops.reshape(self.bias, (1, self.filters, 1, 1))
outputs += bias
if self.rank == 3:
# As of Mar 2017, direct addition is significantly slower than
# bias_add when computing gradients. To use bias_add, we collapse Z
# and Y into a single dimension to obtain a 4D input tensor.
outputs_shape = outputs.shape.as_list()
outputs_4d = array_ops.reshape(outputs,
[outputs_shape[0], outputs_shape[1],
outputs_shape[2] * outputs_shape[3],
outputs_shape[4]])
outputs_4d = nn.bias_add(outputs_4d, self.bias, data_format='NCHW')
outputs = array_ops.reshape(outputs_4d, outputs_shape)
else:
outputs = nn.bias_add(outputs, self.bias, data_format='NHWC')
if self.activation is not None:
return self.activation(outputs)
return outputs
示例6: conv1d
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def conv1d(x,
kernel,
strides=1,
padding='valid',
data_format=None,
dilation_rate=1):
"""1D convolution.
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
strides: stride integer.
padding: string, `"same"`, `"causal"` or `"valid"`.
data_format: string, one of "channels_last", "channels_first".
dilation_rate: integer dilate rate.
Returns:
A tensor, result of 1D convolution.
"""
kernel_shape = kernel.get_shape().as_list()
if padding == 'causal':
# causal (dilated) convolution:
left_pad = dilation_rate * (kernel_shape[0] - 1)
x = temporal_padding(x, (left_pad, 0))
padding = 'valid'
padding = _preprocess_padding(padding)
if data_format == 'channels_last':
tf_data_format = 'NWC'
else:
tf_data_format = 'NCW'
x = nn.convolution(
input=x,
filter=kernel,
dilation_rate=(dilation_rate,),
strides=(strides,),
padding=padding,
data_format=tf_data_format)
return x
示例7: call
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def call(self, inputs):
outputs = nn.convolution(
input=inputs,
filter=self.kernel,
dilation_rate=self.dilation_rate,
strides=self.strides,
padding=self.padding.upper(),
data_format=utils.convert_data_format(self.data_format, self.rank + 2))
if self.bias is not None:
if self.rank != 2 and self.data_format == 'channels_first':
# bias_add does not support channels_first for non-4D inputs.
if self.rank == 1:
bias = array_ops.reshape(self.bias, (1, self.filters, 1))
if self.rank == 3:
bias = array_ops.reshape(self.bias, (1, self.filters, 1, 1))
outputs += bias
else:
outputs = nn.bias_add(
outputs,
self.bias,
data_format=utils.convert_data_format(self.data_format, 4))
# Note that we passed rank=4 because bias_add will only accept
# NHWC and NCWH even if the rank of the inputs is 3 or 5.
if self.activation is not None:
return self.activation(outputs)
return outputs
示例8: _conv_class_factory
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def _conv_class_factory(name, rank):
"""Subclass from _SignalConv, fixing convolution rank."""
def init(self, *args, **kwargs):
return _SignalConv.__init__(self, rank, *args, **kwargs)
clsdict = {"__init__": init,
"__doc__": _SignalConv.__doc__.format(rank=rank)}
return type(name, (_SignalConv,), clsdict)
# pylint:disable=invalid-name
# Subclass _SignalConv for each dimensionality.
示例9: call
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def call(self, inputs):
inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
ndim = self._input_rank
if self.rectify:
inputs = nn.relu(inputs)
# Compute normalization pool.
if ndim == 2:
norm_pool = math_ops.matmul(math_ops.square(inputs), self.gamma)
norm_pool = nn.bias_add(norm_pool, self.beta)
elif self.data_format == "channels_last" and ndim <= 5:
shape = self.gamma.shape.as_list()
gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)
norm_pool = nn.convolution(math_ops.square(inputs), gamma, "VALID")
norm_pool = nn.bias_add(norm_pool, self.beta)
else: # generic implementation
# This puts channels in the last dimension regardless of input.
norm_pool = math_ops.tensordot(
math_ops.square(inputs), self.gamma, [[self._channel_axis()], [0]])
norm_pool += self.beta
if self.data_format == "channels_first":
# Return to channels_first format if necessary.
axes = list(range(ndim - 1))
axes.insert(1, ndim - 1)
norm_pool = array_ops.transpose(norm_pool, axes)
if self.inverse:
norm_pool = math_ops.sqrt(norm_pool)
else:
norm_pool = math_ops.rsqrt(norm_pool)
outputs = inputs * norm_pool
if not context.executing_eagerly():
outputs.set_shape(self.compute_output_shape(inputs.shape))
return outputs
示例10: depthwise_conv2d
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid',
data_format=None, dilation_rate=(1, 1)):
"""2D convolution with separable filters.
Arguments:
x: input tensor
depthwise_kernel: convolution kernel for the depthwise convolution.
strides: strides tuple (length 2).
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
dilation_rate: tuple of integers,
dilation rates for the separable convolution.
Returns:
Output tensor.
Raises:
ValueError: if `data_format` is neither `channels_last`
or `channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
padding = _preprocess_padding(padding)
strides = (1,) + strides + (1,)
x = nn.depthwise_conv2d(x, depthwise_kernel,
strides=strides,
padding=padding,
rate=dilation_rate)
return _postprocess_conv2d_output(x, data_format)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:36,代碼來源:backend.py
示例11: local_conv1d
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None):
"""Apply 1D conv with un-shared weights.
Arguments:
inputs: 3D tensor with shape: (batch_size, steps, input_dim)
kernel: the unshared weight for convolution,
with shape (output_length, feature_dim, filters)
kernel_size: a tuple of a single integer,
specifying the length of the 1D convolution window
strides: a tuple of a single integer,
specifying the stride length of the convolution
data_format: the data format, channels_first or channels_last
Returns:
the tensor after 1d conv with un-shared weights, with shape (batch_size,
output_length, filters)
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
stride = strides[0]
kernel_shape = int_shape(kernel)
output_length = kernel_shape[0]
feature_dim = kernel_shape[1]
xs = []
for i in range(output_length):
slice_length = slice(i * stride, i * stride + kernel_size[0])
xs.append(reshape(inputs[:, slice_length, :], (1, -1, feature_dim)))
x_aggregate = concatenate(xs, axis=0)
# Shape: `(output_length, batch_size, filters)`.
output = batch_dot(x_aggregate, kernel)
return permute_dimensions(output, (1, 0, 2))
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:41,代碼來源:backend.py
示例12: conv2d
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def conv2d(x,
kernel,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1)):
"""2D convolution.
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/ouputs.
dilation_rate: tuple of 2 integers.
Returns:
A tensor, result of 2D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
# With 4d inputs, nn.convolution only supports
# data_format NHWC, so we transpose the inputs
# in case we are in data_format channels_first.
x = _preprocess_conv2d_input(x, data_format)
padding = _preprocess_padding(padding)
x = nn.convolution(
input=x,
filter=kernel,
dilation_rate=dilation_rate,
strides=strides,
padding=padding,
data_format='NHWC')
return _postprocess_conv2d_output(x, data_format)
示例13: conv2d_transpose
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def conv2d_transpose(x,
kernel,
output_shape,
strides=(1, 1),
padding='valid',
data_format=None):
"""2D deconvolution (i.e.
transposed convolution).
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
output_shape: 1D int tensor for the output shape.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/ouputs.
Returns:
A tensor, result of transposed 2D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
if isinstance(output_shape, (tuple, list)):
output_shape = array_ops.stack(output_shape)
x = _preprocess_conv2d_input(x, data_format)
output_shape = _preprocess_deconv_output_shape(x, output_shape, data_format)
padding = _preprocess_padding(padding)
strides = (1,) + strides + (1,)
x = nn.conv2d_transpose(x, kernel, output_shape, strides, padding=padding)
x = _postprocess_conv2d_output(x, data_format)
return x
示例14: separable_conv2d
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def separable_conv2d(x,
depthwise_kernel,
pointwise_kernel,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1)):
"""2D convolution with separable filters.
Arguments:
x: input tensor
depthwise_kernel: convolution kernel for the depthwise convolution.
pointwise_kernel: kernel for the 1x1 convolution.
strides: strides tuple (length 2).
padding: padding mode, "valid" or "same".
data_format: data format, "channels_first" or "channels_last".
dilation_rate: tuple of integers,
dilation rates for the separable convolution.
Returns:
Output tensor.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
padding = _preprocess_padding(padding)
strides = (1,) + strides + (1,)
x = nn.separable_conv2d(
x,
depthwise_kernel,
pointwise_kernel,
strides=strides,
padding=padding,
rate=dilation_rate)
return _postprocess_conv2d_output(x, data_format)
示例15: conv2d
# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import convolution [as 別名]
def conv2d(x,
kernel,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1)):
"""2D convolution.
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/outputs.
dilation_rate: tuple of 2 integers.
Returns:
A tensor, result of 2D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
# With 4d inputs, nn.convolution only supports
# data_format NHWC, so we transpose the inputs
# in case we are in data_format channels_first.
x = _preprocess_conv2d_input(x, data_format)
padding = _preprocess_padding(padding)
x = nn.convolution(
input=x,
filter=kernel,
dilation_rate=dilation_rate,
strides=strides,
padding=padding,
data_format='NHWC')
return _postprocess_conv2d_output(x, data_format)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:45,代碼來源:backend.py