當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.bias_add方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.nn.bias_add方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.bias_add方法的具體用法?Python nn.bias_add怎麽用?Python nn.bias_add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.nn的用法示例。


在下文中一共展示了nn.bias_add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def call(self, inputs):
    inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
    shape = inputs.get_shape().as_list()
    output_shape = shape[:-1] + [self.units]
    if len(output_shape) > 2:
      # Broadcasting is required for the inputs.
      outputs = standard_ops.tensordot(inputs, self.kernel, [[len(shape) - 1],
                                                             [0]])
      # Reshape the output back to the original ndim of the input.
      outputs.set_shape(output_shape)
    else:
      outputs = standard_ops.matmul(inputs, self.kernel)
    if self.use_bias:
      outputs = nn.bias_add(outputs, self.bias)
    if self.activation is not None:
      return self.activation(outputs)  # pylint: disable=not-callable
    return outputs 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:core.py

示例2: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def call(self, inputs):
        w = self.compute_spectral_norm()
        inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
        rank = common_shapes.rank(inputs)
        if rank > 2:
            # Broadcasting is required for the inputs.
            outputs = standard_ops.tensordot(inputs, w, [[rank - 1], [0]])
            # Reshape the output back to the original ndim of the input.
            if not context.executing_eagerly():
                shape = inputs.get_shape().as_list()
                output_shape = shape[:-1] + [self.units]
                outputs.set_shape(output_shape)
        else:
            outputs = gen_math_ops.mat_mul(inputs, w)
        if self.use_bias:
            outputs = nn.bias_add(outputs, self.bias)
        if self.activation is not None:
            return self.activation(outputs)  # pylint: disable=not-callable
        return outputs 
開發者ID:keiohta,項目名稱:tf2rl,代碼行數:21,代碼來源:spectral_norm_dense.py

示例3: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def call(self, inputs):
    shape = inputs.get_shape().as_list()
    input_dim = shape[-1]
    output_shape = shape[:-1] + [self.units]
    if len(output_shape) > 2:
      # Reshape the input to 2D.
      output_shape_tensors = array_ops.unstack(array_ops.shape(inputs))
      output_shape_tensors[-1] = self.units
      output_shape_tensor = array_ops.stack(output_shape_tensors)
      inputs = array_ops.reshape(inputs, [-1, input_dim])

    outputs = standard_ops.matmul(inputs, self.kernel)
    if self.use_bias:
      outputs = nn.bias_add(outputs, self.bias)

    if len(output_shape) > 2:
      # Reshape the output back to the original ndim of the input.
      outputs = array_ops.reshape(outputs, output_shape_tensor)
      outputs.set_shape(output_shape)

    if self.activation is not None:
      return self.activation(outputs)  # pylint: disable=not-callable
    return outputs 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:25,代碼來源:core.py

示例4: testDeterministicGradients

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def testDeterministicGradients(self):
    with self.session(force_gpu=True):
      # There are problems with using force_gpu=True and cached_session with
      # both eager mode and graph mode in the same test. Using a non-cached
      # session and putting everything inside the same session context is
      # a compromise.
      for op_binding in (tf.nn.bias_add, nn.bias_add, nn_ops.bias_add):
        for data_layout in ('channels_first', 'channels_last'):
          # With the selected layer configuration, at least in TensorFlow
          # version 2.0, when data_layout='channels_last', bias_add operates
          # deterministically by default. I don't know if this is true for
          # all layer configurations. These cases are still being tested here,
          # for completeness.
          for data_rank in (1, 2, 3):
            for data_type in (dtypes.float16, dtypes.float32, dtypes.float64):
              self._testDeterministicGradientsCase(op_binding, data_layout,
                                                   data_rank, data_type) 
開發者ID:NVIDIA,項目名稱:framework-determinism,代碼行數:19,代碼來源:test_patch_bias_add.py

示例5: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def call(self, inputs, training=True):
        # BN if training
        if training:
            inputs = tf.keras.layers.BatchNormalization()(inputs)
        # dropout if training
        if training and self.dropout_rate > 0.0:
            inputs = dropout(inputs, self.dropout_rate, self.num_features_nonzero, self.is_sparse_inputs)
        if not training:
            print("gcn not training now")
        # convolve
        hidden_vectors = list()
        for i in range(len(self.adjs)):
            pre_sup = tf.matmul(inputs, self.kernels[i], a_is_sparse=self.is_sparse_inputs)
            hidden_vector = tf.sparse.sparse_dense_matmul(tf.cast(self.adjs[i], tf.float32), pre_sup)
            hidden_vectors.append(hidden_vector)
        outputs = tf.add_n(hidden_vectors)
        # bias
        if self.use_bias:
            outputs = nn.bias_add(outputs, self.bias)
        # activation
        if self.activation is not None:
            return self.activation(outputs)
        return outputs 
開發者ID:nju-websoft,項目名稱:AliNet,代碼行數:25,代碼來源:layers.py

示例6: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def call(self, inputs):
    inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
    shape = inputs.get_shape().as_list()
    if len(shape) > 2:
      # Broadcasting is required for the inputs.
      outputs = standard_ops.tensordot(inputs, self.kernel, [[len(shape) - 1],
                                                             [0]])
      # Reshape the output back to the original ndim of the input.
      if context.in_graph_mode():
        output_shape = shape[:-1] + [self.units]
        outputs.set_shape(output_shape)
    else:
      outputs = standard_ops.matmul(inputs, self.kernel)
    if self.use_bias:
      outputs = nn.bias_add(outputs, self.bias)
    if self.activation is not None:
      return self.activation(outputs)  # pylint: disable=not-callable
    return outputs 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:20,代碼來源:core.py

示例7: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def call(self, inputs):
    # Apply the actual ops.
    if self.data_format == 'channels_last':
      strides = (1,) + self.strides + (1,)
    else:
      strides = (1, 1) + self.strides
    outputs = nn.separable_conv2d(
        inputs,
        self.depthwise_kernel,
        self.pointwise_kernel,
        strides=strides,
        padding=self.padding.upper(),
        rate=self.dilation_rate,
        data_format=utils.convert_data_format(self.data_format, ndim=4))

    if self.use_bias:
      outputs = nn.bias_add(
          outputs,
          self.bias,
          data_format=utils.convert_data_format(self.data_format, ndim=4))

    if self.activation is not None:
      return self.activation(outputs)
    return outputs 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:26,代碼來源:convolutional.py

示例8: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def call(self, inputs):
    inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
    ndim = self._input_rank

    shape = self.gamma.get_shape().as_list()
    gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)

    # Compute normalization pool.
    if self.data_format == 'channels_first':
      norm_pool = nn.convolution(
          math_ops.square(inputs),
          gamma,
          'VALID',
          data_format='NC' + 'DHW' [-(ndim - 2):])
      if ndim == 3:
        norm_pool = array_ops.expand_dims(norm_pool, 2)
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
        norm_pool = array_ops.squeeze(norm_pool, [2])
      elif ndim == 5:
        shape = array_ops.shape(norm_pool)
        norm_pool = array_ops.reshape(norm_pool, shape[:3] + [-1])
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
        norm_pool = array_ops.reshape(norm_pool, shape)
      else:  # ndim == 4
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
    else:  # channels_last
      norm_pool = nn.convolution(math_ops.square(inputs), gamma, 'VALID')
      norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NHWC')
    norm_pool = math_ops.sqrt(norm_pool)

    if self.inverse:
      outputs = inputs * norm_pool
    else:
      outputs = inputs / norm_pool
    outputs.set_shape(inputs.get_shape())
    return outputs 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:38,代碼來源:layers.py

示例9: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def call(self, inputs):
    outputs = nn.convolution(
        input=inputs,
        filter=self.kernel,
        dilation_rate=self.dilation_rate,
        strides=self.strides,
        padding=self.padding.upper(),
        data_format=utils.convert_data_format(self.data_format, self.rank + 2))

    if self.bias is not None:
      if self.data_format == 'channels_first':
        # bias_add only supports NHWC.
        # TODO(fchollet): remove this when `bias_add` is feature-complete.
        if self.rank == 1:
          bias = array_ops.reshape(self.bias, (1, self.filters, 1))
          outputs += bias
        if self.rank == 2:
          bias = array_ops.reshape(self.bias, (1, self.filters, 1, 1))
          outputs += bias
        if self.rank == 3:
          # As of Mar 2017, direct addition is significantly slower than
          # bias_add when computing gradients. To use bias_add, we collapse Z
          # and Y into a single dimension to obtain a 4D input tensor.
          outputs_shape = outputs.shape.as_list()
          outputs_4d = array_ops.reshape(outputs,
                                         [outputs_shape[0], outputs_shape[1],
                                          outputs_shape[2] * outputs_shape[3],
                                          outputs_shape[4]])
          outputs_4d = nn.bias_add(outputs_4d, self.bias, data_format='NCHW')
          outputs = array_ops.reshape(outputs_4d, outputs_shape)
      else:
        outputs = nn.bias_add(outputs, self.bias, data_format='NHWC')

    if self.activation is not None:
      return self.activation(outputs)
    return outputs 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:convolutional.py

示例10: bias_add

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def bias_add(x, bias, data_format=None):
  """Adds a bias vector to a tensor.

  Arguments:
      x: Tensor or variable.
      bias: Bias tensor to add.
      data_format: Data format for 3D, 4D or 5D tensors:
          one of "channels_first", "channels_last".

  Returns:
      Output tensor.

  Raises:
      ValueError: In case of invalid `data_format` argument.
  """
  if data_format is None:
    data_format = image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Unknown data_format ' + str(data_format))
  if ndim(x) == 5:
    if data_format == 'channels_first':
      x += reshape(bias, (1, int_shape(bias)[0], 1, 1, 1))
    elif data_format == 'channels_last':
      x += reshape(bias, (1, 1, 1, 1, int_shape(bias)[0]))
  elif ndim(x) == 4:
    if data_format == 'channels_first':
      # No support yet for NCHW in bias_add.
      x += reshape(bias, (1, int_shape(bias)[0], 1, 1))
    elif data_format == 'channels_last':
      x = nn.bias_add(x, bias, data_format='NHWC')
  elif ndim(x) == 3:
    if data_format == 'channels_first':
      x += reshape(bias, (1, int_shape(bias)[0], 1))
    elif data_format == 'channels_last':
      x += reshape(bias, (1, 1, int_shape(bias)[0]))
  else:
    x = nn.bias_add(x, bias)
  return x


# RANDOMNESS 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:43,代碼來源:backend.py

示例11: call

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def call(self, inputs):
    outputs = nn.convolution(
        input=inputs,
        filter=self.kernel,
        dilation_rate=self.dilation_rate,
        strides=self.strides,
        padding=self.padding.upper(),
        data_format=utils.convert_data_format(self.data_format, self.rank + 2))
    if self.bias is not None:
      if self.rank != 2 and self.data_format == 'channels_first':
        # bias_add does not support channels_first for non-4D inputs.
        if self.rank == 1:
          bias = array_ops.reshape(self.bias, (1, self.filters, 1))
        if self.rank == 3:
          bias = array_ops.reshape(self.bias, (1, self.filters, 1, 1))
        outputs += bias
      else:
        outputs = nn.bias_add(
            outputs,
            self.bias,
            data_format=utils.convert_data_format(self.data_format, 4))
        # Note that we passed rank=4 because bias_add will only accept
        # NHWC and NCWH even if the rank of the inputs is 3 or 5.

    if self.activation is not None:
      return self.activation(outputs)
    return outputs 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:29,代碼來源:convolutional.py

示例12: _patch_bias_add

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def _patch_bias_add():
  tf.nn.bias_add = _new_bias_add_1_14 # access via public API
  nn.bias_add = _new_bias_add_1_14 # called from tf.keras.layers.convolutional.Conv
  nn_ops.bias_add = _new_bias_add_1_14 # called from tests

# The original, pre-patched method can be viewed at
# https://github.com/tensorflow/tensorflow/blob/v1.14.0/tensorflow/python/ops/nn_ops.py#L2628 
開發者ID:NVIDIA,項目名稱:framework-determinism,代碼行數:9,代碼來源:patch.py

示例13: _testBias

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def _testBias(self, np_inputs, np_bias, use_gpu=False):
    np_val = self._npBias(np_inputs, np_bias)
    with self.cached_session(use_gpu=use_gpu):
      tf_val = self.evaluate(nn_ops.bias_add(np_inputs, np_bias))
    self.assertAllCloseAccordingToType(np_val, tf_val) 
開發者ID:NVIDIA,項目名稱:framework-determinism,代碼行數:7,代碼來源:test_patch_bias_add.py

示例14: _testBiasNCHW

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def _testBiasNCHW(self, np_inputs, np_bias, use_gpu):
    np_val = self._npBias(np_inputs, np_bias)
    np_inputs = self._NHWCToNCHW(np_inputs)
    with self.cached_session(use_gpu=use_gpu):
      tf_val = self.evaluate(nn_ops.bias_add(np_inputs, np_bias,
                                             data_format="NCHW"))
    tf_val = self._NCHWToNHWC(tf_val)
    self.assertAllCloseAccordingToType(self._AtLeast3d(np_val), tf_val) 
開發者ID:NVIDIA,項目名稱:framework-determinism,代碼行數:10,代碼來源:test_patch_bias_add.py

示例15: _eval_op

# 需要導入模塊: from tensorflow.python.ops import nn [as 別名]
# 或者: from tensorflow.python.ops.nn import bias_add [as 別名]
def _eval_op(self, features, labels, logits=None, logits_input=None,
               name="eval_op"):
    labels = _check_labels(labels, self._label_name)
    if self._enable_centered_bias:
      logits = nn.bias_add(logits, _centered_bias(
          self.logits_dimension,
          self._centered_bias_weight_collection))
    loss_unweighted = self._eval_loss_fn(logits, labels)
    loss, _ = _loss(loss_unweighted,
                    _weight_tensor(features, self._weight_column_name),
                    name=name)

    predictions = self._logits_to_prediction(logits)

    return predictions, loss 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:17,代碼來源:head.py


注:本文中的tensorflow.python.ops.nn.bias_add方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。