本文整理匯總了Python中tensorflow.python.ops.math_ops.truediv方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.truediv方法的具體用法?Python math_ops.truediv怎麽用?Python math_ops.truediv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.truediv方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _safe_div
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _safe_div(numerator, denominator, name):
"""Divides two values, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
name: Name for the returned op.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
return array_ops.where(
math_ops.greater(denominator, 0),
math_ops.truediv(numerator, denominator),
0,
name=name)
示例2: _estimate_data_distribution
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _estimate_data_distribution(c, num_examples_per_class_seen):
"""Estimate data distribution as labels are seen.
Args:
c: The class labels. Type `int32`, shape `[batch_size]`.
num_examples_per_class_seen: A `ResourceVariable` containing counts.
Type `int64`, shape `[num_classes]`.
Returns:
dist: The updated distribution. Type `float32`, shape `[num_classes]`.
"""
num_classes = num_examples_per_class_seen.get_shape()[0].value
# Update the class-count based on what labels are seen in
# batch. But do this asynchronously to avoid performing a
# cross-device round-trip. Just use the cached value.
num_examples_per_class_seen = num_examples_per_class_seen.assign_add(
math_ops.reduce_sum(
array_ops.one_hot(c, num_classes, dtype=dtypes.int64),
0))
init_prob_estimate = math_ops.truediv(
num_examples_per_class_seen,
math_ops.reduce_sum(num_examples_per_class_seen))
return math_ops.cast(init_prob_estimate, dtypes.float32)
示例3: _safe_div
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _safe_div(numerator, denominator, name):
"""Divides two tensors element-wise, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
name: Name for the returned op.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
t = math_ops.truediv(numerator, denominator)
zero = array_ops.zeros_like(t, dtype=denominator.dtype)
condition = math_ops.greater(denominator, zero)
zero = math_ops.cast(zero, t.dtype)
return array_ops.where(condition, t, zero, name=name)
示例4: _safe_div
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _safe_div(numerator, denominator, name):
"""Divides two values, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
name: Name for the returned op.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
return math_ops.select(
math_ops.greater(denominator, 0),
math_ops.truediv(numerator, denominator),
0,
name=name)
示例5: _estimate_data_distribution
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _estimate_data_distribution(labels, num_classes, smoothing_constant=10):
"""Estimate data distribution as labels are seen."""
# Variable to track running count of classes. Smooth by a nonzero value to
# avoid division-by-zero. Higher values provide more stability at the cost of
# slower convergence.
if smoothing_constant <= 0:
raise ValueError('smoothing_constant must be nonzero.')
num_examples_per_class_seen = variable_scope.variable(
initial_value=[smoothing_constant] * num_classes,
trainable=False,
name='class_count',
dtype=dtypes.int64)
# Update the class-count based on what labels are seen in batch.
num_examples_per_class_seen = num_examples_per_class_seen.assign_add(
math_ops.reduce_sum(
array_ops.one_hot(
labels, num_classes, dtype=dtypes.int64), 0))
# Normalize count into a probability.
# NOTE: Without the `+= 0` line below, the test
# `testMultiThreadedEstimateDataDistribution` fails. The reason is that
# before this line, `num_examples_per_class_seen` is a Tensor that shares a
# buffer with an underlying `ref` object. When the `ref` is changed by another
# thread, `num_examples_per_class_seen` changes as well. Since this can happen
# in the middle of the normalization computation, we get probabilities that
# are very far from summing to one. Adding `+= 0` copies the contents of the
# tensor to a new buffer, which will be consistent from the start to the end
# of the normalization computation.
num_examples_per_class_seen += 0
init_prob_estimate = math_ops.truediv(
num_examples_per_class_seen,
math_ops.reduce_sum(num_examples_per_class_seen))
# Must return float32 (not float64) to agree with downstream `_verify_input`
# checks.
return math_ops.cast(init_prob_estimate, dtypes.float32)
示例6: _estimate_data_distribution
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _estimate_data_distribution(labels, num_classes, smoothing_constant=10):
"""Estimate data distribution as labels are seen."""
# Variable to track running count of classes. Smooth by a nonzero value to
# avoid division-by-zero. Higher values provide more stability at the cost of
# slower convergence.
if smoothing_constant <= 0:
raise ValueError('smoothing_constant must be nonzero.')
num_examples_per_class_seen = variables.Variable(
initial_value=[smoothing_constant] * num_classes,
trainable=False,
name='class_count',
dtype=dtypes.int64)
# Update the class-count based on what labels are seen in batch.
num_examples_per_class_seen = num_examples_per_class_seen.assign_add(
math_ops.reduce_sum(
array_ops.one_hot(
labels, num_classes, dtype=dtypes.int64), 0))
# Normalize count into a probability.
# NOTE: Without the `+= 0` line below, the test
# `testMultiThreadedEstimateDataDistribution` fails. The reason is that
# before this line, `num_examples_per_class_seen` is a Tensor that shares a
# buffer with an underlying `ref` object. When the `ref` is changed by another
# thread, `num_examples_per_class_seen` changes as well. Since this can happen
# in the middle of the normalization computation, we get probabilities that
# are very far from summing to one. Adding `+= 0` copies the contents of the
# tensor to a new buffer, which will be consistent from the start to the end
# of the normalization computation.
num_examples_per_class_seen += 0
init_prob_estimate = math_ops.truediv(
num_examples_per_class_seen,
math_ops.reduce_sum(num_examples_per_class_seen))
# Must return float32 (not float64) to agree with downstream `_verify_input`
# checks.
return math_ops.cast(init_prob_estimate, dtypes.float32)
示例7: _auc_convert_hist_to_auc
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _auc_convert_hist_to_auc(hist_true_acc, hist_false_acc, nbins):
"""Convert histograms to auc.
Args:
hist_true_acc: `Tensor` holding accumulated histogram of scores for records
that were `True`.
hist_false_acc: `Tensor` holding accumulated histogram of scores for
records that were `False`.
nbins: Integer number of bins in the histograms.
Returns:
Scalar `Tensor` estimating AUC.
"""
# Note that this follows the "Approximating AUC" section in:
# Efficient AUC learning curve calculation, R. R. Bouckaert,
# AI'06 Proceedings of the 19th Australian joint conference on Artificial
# Intelligence: advances in Artificial Intelligence
# Pages 181-191.
# Note that the above paper has an error, and we need to re-order our bins to
# go from high to low score.
# Normalize histogram so we get fraction in each bin.
normed_hist_true = math_ops.truediv(hist_true_acc,
math_ops.reduce_sum(hist_true_acc))
normed_hist_false = math_ops.truediv(hist_false_acc,
math_ops.reduce_sum(hist_false_acc))
# These become delta x, delta y from the paper.
delta_y_t = array_ops.reverse_v2(normed_hist_true, [0], name='delta_y_t')
delta_x_t = array_ops.reverse_v2(normed_hist_false, [0], name='delta_x_t')
# strict_1d_cumsum requires float32 args.
delta_y_t = math_ops.cast(delta_y_t, dtypes.float32)
delta_x_t = math_ops.cast(delta_x_t, dtypes.float32)
# Trapezoidal integration, \int_0^1 0.5 * (y_t + y_{t-1}) dx_t
y_t = _strict_1d_cumsum(delta_y_t, nbins)
first_trap = delta_x_t[0] * y_t[0] / 2.0
other_traps = delta_x_t[1:] * (y_t[1:] + y_t[:nbins - 1]) / 2.0
return math_ops.add(first_trap, math_ops.reduce_sum(other_traps), name='auc')
示例8: _estimate_data_distribution
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _estimate_data_distribution(labels, num_classes, smoothing_constant=10):
"""Estimate data distribution as labels are seen."""
# Variable to track running count of classes. Smooth by a nonzero value to
# avoid division-by-zero. Higher values provide more stability at the cost of
# slower convergence.
if smoothing_constant <= 0:
raise ValueError('smoothing_constant must be nonzero.')
num_examples_per_class_seen = variables.Variable(
initial_value=[smoothing_constant] * num_classes, trainable=False,
name='class_count', dtype=dtypes.int64)
# Update the class-count based on what labels are seen in batch.
num_examples_per_class_seen = num_examples_per_class_seen.assign_add(
math_ops.reduce_sum(array_ops.one_hot(labels, num_classes,
dtype=dtypes.int64), 0))
# Normalize count into a probability.
# NOTE: Without the `+= 0` line below, the test
# `testMultiThreadedEstimateDataDistribution` fails. The reason is that
# before this line, `num_examples_per_class_seen` is a Tensor that shares a
# buffer with an underlying `ref` object. When the `ref` is changed by another
# thread, `num_examples_per_class_seen` changes as well. Since this can happen
# in the middle of the normalization computation, we get probabilities that
# are very far from summing to one. Adding `+= 0` copies the contents of the
# tensor to a new buffer, which will be consistent from the start to the end
# of the normalization computation.
num_examples_per_class_seen += 0
init_prob_estimate = math_ops.truediv(
num_examples_per_class_seen,
math_ops.reduce_sum(num_examples_per_class_seen))
# Must return float32 (not float64) to agree with downstream `_verify_input`
# checks.
return math_ops.cast(init_prob_estimate, dtypes.float32)
示例9: _auc_convert_hist_to_auc
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _auc_convert_hist_to_auc(hist_true_acc, hist_false_acc, nbins):
"""Convert histograms to auc.
Args:
hist_true_acc: `Tensor` holding accumulated histogram of scores for records
that were `True`.
hist_false_acc: `Tensor` holding accumulated histogram of scores for
records that were `False`.
nbins: Integer number of bins in the histograms.
Returns:
Scalar `Tensor` estimating AUC.
"""
# Note that this follows the "Approximating AUC" section in:
# Efficient AUC learning curve calculation, R. R. Bouckaert,
# AI'06 Proceedings of the 19th Australian joint conference on Artificial
# Intelligence: advances in Artificial Intelligence
# Pages 181-191.
# Note that the above paper has an error, and we need to re-order our bins to
# go from high to low score.
# Normalize histogram so we get fraction in each bin.
normed_hist_true = math_ops.truediv(hist_true_acc,
math_ops.reduce_sum(hist_true_acc))
normed_hist_false = math_ops.truediv(hist_false_acc,
math_ops.reduce_sum(hist_false_acc))
# These become delta x, delta y from the paper.
delta_y_t = array_ops.reverse_v2(normed_hist_true, [0], name='delta_y_t')
delta_x_t = array_ops.reverse_v2(normed_hist_false, [0], name='delta_x_t')
# strict_1d_cumsum requires float32 args.
delta_y_t = math_ops.cast(delta_y_t, dtypes.float32)
delta_x_t = math_ops.cast(delta_x_t, dtypes.float32)
# Trapezoidal integration, \int_0^1 0.5 * (y_t + y_{t-1}) dx_t
y_t = _strict_1d_cumsum(delta_y_t, nbins)
first_trap = delta_x_t[0] * y_t[0] / 2.0
other_traps = delta_x_t[1:] * (y_t[1:] + y_t[:nbins - 1]) / 2.0
return math_ops.add(first_trap, math_ops.reduce_sum(other_traps), name='auc')
# TODO(langmore) Remove once a faster cumsum (accumulate_sum) Op is available.
# Also see if cast to float32 above can be removed with new cumsum.
# See: https://github.com/tensorflow/tensorflow/issues/813
示例10: weighted_moving_average
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def weighted_moving_average(value,
decay,
weight,
truediv=True,
collections=None,
name=None):
"""Compute the weighted moving average of `value`.
Conceptually, the weighted moving average is:
`moving_average(value * weight) / moving_average(weight)`,
where a moving average updates by the rule
`new_value = decay * old_value + (1 - decay) * update`
Internally, this Op keeps moving average variables of both `value * weight`
and `weight`.
Args:
value: A numeric `Tensor`.
decay: A float `Tensor` or float value. The moving average decay.
weight: `Tensor` that keeps the current value of a weight.
Shape should be able to multiply `value`.
truediv: Boolean, if `True`, dividing by `moving_average(weight)` is
floating point division. If `False`, use division implied by dtypes.
collections: List of graph collections keys to add the internal variables
`value * weight` and `weight` to. Defaults to `[GraphKeys.VARIABLES]`.
name: Optional name of the returned operation.
Defaults to "WeightedMovingAvg".
Returns:
An Operation that updates and returns the weighted moving average.
"""
# Unlike assign_moving_average, the weighted moving average doesn't modify
# user-visible variables. It is the ratio of two internal variables, which are
# moving averages of the updates. Thus, the signature of this function is
# quite different than assign_moving_average.
if collections is None:
collections = [ops.GraphKeys.VARIABLES]
with variable_scope.variable_op_scope(
[value, weight, decay], name, "WeightedMovingAvg") as scope:
value_x_weight_var = variable_scope.get_variable(
"value_x_weight",
initializer=init_ops.zeros_initializer(value.get_shape(),
dtype=value.dtype),
trainable=False,
collections=collections)
weight_var = variable_scope.get_variable(
"weight",
initializer=init_ops.zeros_initializer(weight.get_shape(),
dtype=weight.dtype),
trainable=False,
collections=collections)
numerator = assign_moving_average(value_x_weight_var, value * weight, decay)
denominator = assign_moving_average(weight_var, weight, decay)
if truediv:
return math_ops.truediv(numerator, denominator, name=scope.name)
else:
return math_ops.div(numerator, denominator, name=scope.name)
示例11: weighted_moving_average
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def weighted_moving_average(value,
decay,
weight,
truediv=True,
collections=None,
name=None):
"""Compute the weighted moving average of `value`.
Conceptually, the weighted moving average is:
`moving_average(value * weight) / moving_average(weight)`,
where a moving average updates by the rule
`new_value = decay * old_value + (1 - decay) * update`
Internally, this Op keeps moving average variables of both `value * weight`
and `weight`.
Args:
value: A numeric `Tensor`.
decay: A float `Tensor` or float value. The moving average decay.
weight: `Tensor` that keeps the current value of a weight.
Shape should be able to multiply `value`.
truediv: Boolean, if `True`, dividing by `moving_average(weight)` is
floating point division. If `False`, use division implied by dtypes.
collections: List of graph collections keys to add the internal variables
`value * weight` and `weight` to.
Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
name: Optional name of the returned operation.
Defaults to "WeightedMovingAvg".
Returns:
An Operation that updates and returns the weighted moving average.
"""
# Unlike assign_moving_average, the weighted moving average doesn't modify
# user-visible variables. It is the ratio of two internal variables, which are
# moving averages of the updates. Thus, the signature of this function is
# quite different than assign_moving_average.
if collections is None:
collections = [ops.GraphKeys.GLOBAL_VARIABLES]
with variable_scope.variable_scope(name, "WeightedMovingAvg",
[value, weight, decay]) as scope:
value_x_weight_var = variable_scope.get_variable(
"value_x_weight",
initializer=init_ops.zeros_initializer(value.get_shape(),
dtype=value.dtype),
trainable=False,
collections=collections)
weight_var = variable_scope.get_variable(
"weight",
initializer=init_ops.zeros_initializer(weight.get_shape(),
dtype=weight.dtype),
trainable=False,
collections=collections)
numerator = assign_moving_average(value_x_weight_var, value * weight, decay)
denominator = assign_moving_average(weight_var, weight, decay)
if truediv:
return math_ops.truediv(numerator, denominator, name=scope.name)
else:
return math_ops.div(numerator, denominator, name=scope.name)
示例12: _auc_convert_hist_to_auc
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def _auc_convert_hist_to_auc(hist_true_acc, hist_false_acc, nbins):
"""Convert histograms to auc.
Args:
hist_true_acc: `Tensor` holding accumulated histogram of scores for records
that were `True`.
hist_false_acc: `Tensor` holding accumulated histogram of scores for
records that were `False`.
nbins: Integer number of bins in the histograms.
Returns:
Scalar `Tensor` estimating AUC.
"""
# Note that this follows the "Approximating AUC" section in:
# Efficient AUC learning curve calculation, R. R. Bouckaert,
# AI'06 Proceedings of the 19th Australian joint conference on Artificial
# Intelligence: advances in Artificial Intelligence
# Pages 181-191.
# Note that the above paper has an error, and we need to re-order our bins to
# go from high to low score.
# Normalize histogram so we get fraction in each bin.
normed_hist_true = math_ops.truediv(hist_true_acc,
math_ops.reduce_sum(hist_true_acc))
normed_hist_false = math_ops.truediv(hist_false_acc,
math_ops.reduce_sum(hist_false_acc))
# These become delta x, delta y from the paper.
delta_y_t = array_ops.reverse(normed_hist_true, [True], name='delta_y_t')
delta_x_t = array_ops.reverse(normed_hist_false, [True], name='delta_x_t')
# strict_1d_cumsum requires float32 args.
delta_y_t = math_ops.cast(delta_y_t, dtypes.float32)
delta_x_t = math_ops.cast(delta_x_t, dtypes.float32)
# Trapezoidal integration, \int_0^1 0.5 * (y_t + y_{t-1}) dx_t
y_t = _strict_1d_cumsum(delta_y_t, nbins)
first_trap = delta_x_t[0] * y_t[0] / 2.0
other_traps = delta_x_t[1:] * (y_t[1:] + y_t[:nbins - 1]) / 2.0
return math_ops.add(first_trap, math_ops.reduce_sum(other_traps), name='auc')
# TODO(langmore) Remove once a faster cumsum (accumulate_sum) Op is available.
# Also see if cast to float32 above can be removed with new cumsum.
# See: https://github.com/tensorflow/tensorflow/issues/813
示例13: weighted_resample
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import truediv [as 別名]
def weighted_resample(inputs, weights, overall_rate, scope=None,
mean_decay=0.999, warmup=10, seed=None):
"""Performs an approximate weighted resampling of `inputs`.
This method chooses elements from `inputs` where each item's rate of
selection is proportional to its value in `weights`, and the average
rate of selection across all inputs (and many invocations!) is
`overall_rate`.
Args:
inputs: A list of tensors whose first dimension is `batch_size`.
weights: A `[batch_size]`-shaped tensor with each batch member's weight.
overall_rate: Desired overall rate of resampling.
scope: Scope to use for the op.
mean_decay: How quickly to decay the running estimate of the mean weight.
warmup: Until the resulting tensor has been evaluated `warmup`
times, the resampling menthod uses the true mean over all calls
as its weight estimate, rather than a decayed mean.
seed: Random seed.
Returns:
A list of tensors exactly like `inputs`, but with an unknown (and
possibly zero) first dimension.
A tensor containing the effective resampling rate used for each output.
"""
# Algorithm: Just compute rates as weights/mean_weight *
# overall_rate. This way the the average weight corresponds to the
# overall rate, and a weight twice the average has twice the rate,
# etc.
with ops.name_scope(scope, 'weighted_resample', inputs) as opscope:
# First: Maintain a running estimated mean weight, with decay
# adjusted (by also maintaining an invocation count) during the
# warmup period so that at the beginning, there aren't too many
# zeros mixed in, throwing the average off.
with variable_scope.variable_scope(scope, 'estimate_mean', inputs):
count_so_far = variable_scope.get_local_variable(
'resample_count', initializer=0)
estimated_mean = variable_scope.get_local_variable(
'estimated_mean', initializer=0.0)
count = count_so_far.assign_add(1)
real_decay = math_ops.minimum(
math_ops.truediv((count - 1), math_ops.minimum(count, warmup)),
mean_decay)
batch_mean = math_ops.reduce_mean(weights)
mean = moving_averages.assign_moving_average(
estimated_mean, batch_mean, real_decay, zero_debias=False)
# Then, normalize the weights into rates using the mean weight and
# overall target rate:
rates = weights * overall_rate / mean
results = resample_at_rate([rates] + inputs, rates,
scope=opscope, seed=seed, back_prop=False)
return (results[1:], results[0])