當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.to_int64方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.to_int64方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.to_int64方法的具體用法?Python math_ops.to_int64怎麽用?Python math_ops.to_int64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.to_int64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: set_global_step

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def set_global_step(self, new_global_step, name=None):
    """Sets the global time step of the accumulator.

    The operation logs a warning if we attempt to set to a time step that is
    lower than the accumulator's own time step.

    Args:
      new_global_step: Value of new time step. Can be a variable or a constant
      name: Optional name for the operation.

    Returns:
      Operation that sets the accumulator's time step.
    """
    return gen_data_flow_ops.accumulator_set_global_step(
        self._accumulator_ref,
        math_ops.to_int64(ops.convert_to_tensor(new_global_step)),
        name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:data_flow_ops.py

示例2: apply_grad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def apply_grad(self, grad, local_step=0, name=None):
    """Attempts to apply a gradient to the accumulator.

    The attempt is silently dropped if the gradient is stale, i.e., local_step
    is less than the accumulator's global time step.

    Args:
      grad: The gradient tensor to be applied.
      local_step: Time step at which the gradient was computed.
      name: Optional name for the operation.

    Returns:
      The operation that (conditionally) applies a gradient to the accumulator.

    Raises:
      ValueError: If grad is of the wrong shape
    """
    grad = ops.convert_to_tensor(grad, self._dtype)
    grad.get_shape().assert_is_compatible_with(self._shape)
    local_step = math_ops.to_int64(ops.convert_to_tensor(local_step))
    return gen_data_flow_ops.accumulator_apply_gradient(
        self._accumulator_ref, local_step=local_step, gradient=grad, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:data_flow_ops.py

示例3: assert_integer_form

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def assert_integer_form(
    x, data=None, summarize=None, message=None, name="assert_integer_form"):
  """Assert that x has integer components (or floats equal to integers).

  Args:
    x: Floating-point `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if round(x) != x.
  """

  message = message or "x has non-integer components"
  x = ops.convert_to_tensor(x, name="x")
  casted_x = math_ops.to_int64(x)
  return check_ops.assert_equal(
      x, math_ops.cast(math_ops.round(casted_x), x.dtype),
      data=data, summarize=summarize, message=message, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:util.py

示例4: _transform_feature

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def _transform_feature(self, inputs):
    input_tensor = _to_sparse_input(inputs.get(self.key))

    if self.dtype.is_integer != input_tensor.dtype.is_integer:
      raise ValueError(
          'Column dtype and SparseTensors dtype must be compatible. '
          'key: {}, column dtype: {}, tensor dtype: {}'.format(
              self.key, self.dtype, input_tensor.dtype))

    _assert_string_or_int(
        input_tensor.dtype,
        prefix='column_name: {} input_tensor'.format(self.key))

    key_dtype = self.dtype
    if input_tensor.dtype.is_integer:
      # `index_table_from_tensor` requires 64-bit integer keys.
      key_dtype = dtypes.int64
      input_tensor = math_ops.to_int64(input_tensor)

    return lookup_ops.index_table_from_tensor(
        vocabulary_list=tuple(self.vocabulary_list),
        default_value=self.default_value,
        dtype=key_dtype,
        name='{}_lookup'.format(self.key)).lookup(input_tensor) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:feature_column.py

示例5: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def tensors_to_item(self, keys_to_tensors):
    indices = keys_to_tensors[self._indices_key]
    values = keys_to_tensors[self._values_key]
    if self._shape_key:
      shape = keys_to_tensors[self._shape_key]
      if isinstance(shape, sparse_tensor.SparseTensor):
        shape = sparse_ops.sparse_tensor_to_dense(shape)
    elif self._shape:
      shape = self._shape
    else:
      shape = indices.dense_shape
    indices_shape = array_ops.shape(indices.indices)
    rank = indices_shape[1]
    ids = math_ops.to_int64(indices.values)
    indices_columns_to_preserve = array_ops.slice(
        indices.indices, [0, 0], array_ops.stack([-1, rank - 1]))
    new_indices = array_ops.concat(
        [indices_columns_to_preserve, array_ops.reshape(ids, [-1, 1])], 1)

    tensor = sparse_tensor.SparseTensor(new_indices, values.values, shape)
    if self._densify:
      tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
    return tensor 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:tfexample_decoder.py

示例6: _lengths_to_masks

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def _lengths_to_masks(lengths, max_length):
  """Creates a binary matrix that can be used to mask away padding.

  Args:
    lengths: A vector of integers representing lengths.
    max_length: An integer indicating the maximum length. All values in
      lengths should be less than max_length.
  Returns:
    masks: Masks that can be used to get rid of padding.
  """
  tiled_ranges = array_ops.tile(
      array_ops.expand_dims(math_ops.range(max_length), 0),
      [array_ops.shape(lengths)[0], 1])
  lengths = array_ops.expand_dims(lengths, 1)
  masks = math_ops.to_float(
      math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
  return masks 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:crf.py

示例7: assert_integer_form

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def assert_integer_form(
    x, data=None, summarize=None, message=None, name="assert_integer_form"):
  """Assert that x has integer components (or floats equal to integers).

  Args:
    x: Numeric `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if round(x) != x.
  """

  message = message or "x has non-integer components"
  x = ops.convert_to_tensor(x, name="x")
  casted_x = math_ops.to_int64(x)
  return check_ops.assert_equal(
      x, math_ops.cast(math_ops.round(casted_x), x.dtype),
      data=data, summarize=summarize, message=message, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:24,代碼來源:distribution_util.py

示例8: _lengths_to_masks

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def _lengths_to_masks(lengths, max_length):
  """Creates a binary matrix that can be used to mask away padding.

  Args:
    lengths: A vector of integers representing lengths.
    max_length: An integer indicating the maximum length. All values in
      lengths should be less than max_length.
  Returns:
    masks: Masks that can be used to get rid of padding.
  """
  tiled_ranges = array_ops.tile(
      array_ops.expand_dims(math_ops.range(max_length), 0),
      [array_ops.shape(lengths)[0], 1])
  lengths = array_ops.expand_dims(lengths, 1)
  masks = math_ops.to_float(
      math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
  return masks

# 計算標簽序列的非正則化得分 
開發者ID:koala-ai,項目名稱:tensorflow_nlp,代碼行數:21,代碼來源:crf.py

示例9: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def tensors_to_item(self, keys_to_tensors):
    """Maps the given dictionary of tensors to a concatenated list of bboxes.

    Args:
      keys_to_tensors: a mapping of TF-Example keys to parsed tensors.

    Returns:
      [time, num_boxes, 4] tensor of bounding box coordinates, in order
          [y_min, x_min, y_max, x_max]. Whether the tensor is a SparseTensor
          or a dense Tensor is determined by the return_dense parameter. Empty
          positions in the sparse tensor are filled with -1.0 values.
    """
    sides = []
    for key in self._full_keys:
      value = keys_to_tensors[key]
      expanded_dims = array_ops.concat(
          [math_ops.to_int64(array_ops.shape(value)),
           constant_op.constant([1], dtype=dtypes.int64)], 0)
      side = sparse_ops.sparse_reshape(value, expanded_dims)
      sides.append(side)
    bounding_boxes = sparse_ops.sparse_concat(2, sides)
    if self._return_dense:
      bounding_boxes = sparse_ops.sparse_tensor_to_dense(
          bounding_boxes, default_value=self._default_value)
    return bounding_boxes 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:27,代碼來源:tfexample_decoder.py

示例10: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def tensors_to_item(self, keys_to_tensors):
    indices = keys_to_tensors[self._indices_key]
    values = keys_to_tensors[self._values_key]
    if self._shape_key:
      shape = keys_to_tensors[self._shape_key]
      if isinstance(shape, sparse_tensor.SparseTensor):
        shape = sparse_ops.sparse_tensor_to_dense(shape)
    elif self._shape:
      shape = self._shape
    else:
      shape = indices.shape
    indices_shape = array_ops.shape(indices.indices)
    rank = indices_shape[1]
    ids = math_ops.to_int64(indices.values)
    indices_columns_to_preserve = array_ops.slice(
        indices.indices, [0, 0], array_ops.pack([-1, rank - 1]))
    new_indices = array_ops.concat(1, [indices_columns_to_preserve,
                                       array_ops.reshape(ids, [-1, 1])])

    tensor = sparse_tensor.SparseTensor(new_indices, values.values, shape)
    if self._densify:
      tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
    return tensor 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:tfexample_decoder.py

示例11: _lengths_to_masks

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def _lengths_to_masks(lengths, max_length):
    """Creates a binary matrix that can be used to mask away padding.
    Args:
      lengths: A vector of integers representing lengths.
      max_length: An integer indicating the maximum length. All values in
        lengths should be less than max_length.
    Returns:
      masks: Masks that can be used to get rid of padding.
    """
    tiled_ranges = array_ops.tile(
        array_ops.expand_dims(math_ops.range(max_length), 0),
        [array_ops.shape(lengths)[0], 1])
    lengths = array_ops.expand_dims(lengths, 1)
    masks = math_ops.to_float(
        math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
    return masks 
開發者ID:adapt-sjtu,項目名稱:AMTTL,代碼行數:18,代碼來源:penalty.py

示例12: _get_eval_ops

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def _get_eval_ops(self, features, targets, metrics):
    features, spec = data_ops.ParseDataTensorOrDict(features)
    labels = data_ops.ParseLabelTensorOrDict(targets)

    graph_builder = self.graph_builder_class(
        self.params, device_assigner=self.device_assigner, training=False,
        **self.construction_args)

    probabilities = graph_builder.inference_graph(features, data_spec=spec)

    # One-hot the labels.
    if not self.params.regression:
      labels = math_ops.to_int64(array_ops.one_hot(math_ops.to_int64(
          array_ops.squeeze(labels)), self.params.num_classes, 1, 0))

    if metrics is None:
      metrics = {self.accuracy_metric:
                 eval_metrics.get_metric(self.accuracy_metric)}

    result = {}
    for name, metric in six.iteritems(metrics):
      result[name] = metric(probabilities, labels)

    return result 
開發者ID:lbkchen,項目名稱:deep-learning,代碼行數:26,代碼來源:rf3.py

示例13: _transform_feature

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def _transform_feature(self, inputs):
    input_tensor = _to_sparse_input(inputs.get(self.key))

    if self.dtype.is_integer != input_tensor.dtype.is_integer:
      raise ValueError(
          'Column dtype and SparseTensors dtype must be compatible. '
          'key: {}, column dtype: {}, tensor dtype: {}'.format(
              self.key, self.dtype, input_tensor.dtype))

    _assert_string_or_int(
        input_tensor.dtype,
        prefix='column_name: {} input_tensor'.format(self.key))

    key_dtype = self.dtype
    if input_tensor.dtype.is_integer:
      # `index_table_from_tensor` requires 64-bit integer keys.
      key_dtype = dtypes.int64
      input_tensor = math_ops.to_int64(input_tensor)

    return lookup_ops.index_table_from_tensor(
        vocabulary_list=tuple(self.vocabulary_list),
        default_value=self.default_value,
        num_oov_buckets=self.num_oov_buckets,
        dtype=key_dtype,
        name='{}_lookup'.format(self.key)).lookup(input_tensor) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:feature_column.py

示例14: _SparseReduceSumGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def _SparseReduceSumGrad(op, out_grad):
  """Similar to gradient for the Sum Op (i.e. tf.reduce_sum())."""
  sp_indices = op.inputs[0]
  sp_shape = op.inputs[2]
  output_shape_kept_dims = math_ops.reduced_shape(sp_shape, op.inputs[3])
  out_grad_reshaped = array_ops.reshape(out_grad, output_shape_kept_dims)
  scale = sp_shape // math_ops.to_int64(output_shape_kept_dims)
  # (sparse_indices, sparse_values, sparse_shape, reduction_axes)
  return (None, array_ops.gather_nd(out_grad_reshaped, sp_indices // scale),
          None, None) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:sparse_grad.py

示例15: _SparseDenseCwiseMulOrDivGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 別名]
def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
  """Common code for SparseDenseCwise{Mul,Div} gradients."""
  x_indices = op.inputs[0]
  x_shape = op.inputs[2]
  y = op.inputs[3]

  y_shape = math_ops.to_int64(array_ops.shape(y))
  num_added_dims = array_ops.expand_dims(
      array_ops.size(x_shape) - array_ops.size(y_shape), 0)
  augmented_y_shape = array_ops.concat(
      [array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0)

  scaling = x_shape // augmented_y_shape
  scaled_indices = x_indices // scaling
  scaled_indices = array_ops.slice(scaled_indices,
                                   array_ops.concat([[0], num_added_dims], 0),
                                   [-1, -1])
  dense_vals = array_ops.gather_nd(y, scaled_indices)

  if is_mul:
    dx = grad * dense_vals
    dy_val = grad * op.inputs[1]
  else:
    dx = grad / dense_vals
    dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
  # indices can repeat after scaling, so we can't use sparse_to_dense().
  dy = sparse_ops.sparse_add(
      array_ops.zeros_like(y),
      sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))

  # (sp_indices, sp_vals, sp_shape, dense)
  return (None, dx, None, dy) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:sparse_grad.py


注:本文中的tensorflow.python.ops.math_ops.to_int64方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。