本文整理匯總了Python中tensorflow.python.ops.math_ops.to_int32方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.to_int32方法的具體用法?Python math_ops.to_int32怎麽用?Python math_ops.to_int32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.to_int32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def loss(self, data, labels):
"""The loss to minimize while training."""
if self.is_regression:
diff = self.training_inference_graph(data) - math_ops.to_float(labels)
mean_squared_error = math_ops.reduce_mean(diff * diff)
root_mean_squared_error = math_ops.sqrt(mean_squared_error, name="loss")
loss = root_mean_squared_error
else:
loss = math_ops.reduce_mean(
nn_ops.sparse_softmax_cross_entropy_with_logits(
labels=array_ops.squeeze(math_ops.to_int32(labels)),
logits=self.training_inference_graph(data)),
name="loss")
if self.regularizer:
loss += layers.apply_regularization(self.regularizer,
variables.trainable_variables())
return loss
示例2: average_impurity
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def average_impurity(self):
"""Constructs a TF graph for evaluating the average leaf impurity of a tree.
If in regression mode, this is the leaf variance. If in classification mode,
this is the gini impurity.
Returns:
The last op in the graph.
"""
children = array_ops.squeeze(array_ops.slice(
self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1])
is_leaf = math_ops.equal(constants.LEAF_NODE, children)
leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf),
squeeze_dims=[1]))
counts = array_ops.gather(self.variables.node_sums, leaves)
gini = self._weighted_gini(counts)
# Guard against step 1, when there often are no leaves yet.
def impurity():
return gini
# Since average impurity can be used for loss, when there's no data just
# return a big number so that loss always decreases.
def big():
return array_ops.ones_like(gini, dtype=dtypes.float32) * 10000000.
return control_flow_ops.cond(math_ops.greater(
array_ops.shape(leaves)[0], 0), impurity, big)
示例3: loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def loss(self, data, labels):
"""The loss to minimize while training."""
if self.is_regression:
diff = self.training_inference_graph(data) - math_ops.to_float(labels)
mean_squared_error = math_ops.reduce_mean(diff * diff)
root_mean_squared_error = math_ops.sqrt(mean_squared_error, name="loss")
loss = root_mean_squared_error
else:
loss = math_ops.reduce_mean(
nn_ops.sparse_softmax_cross_entropy_with_logits(
self.training_inference_graph(data),
array_ops.squeeze(math_ops.to_int32(labels))),
name="loss")
if self.regularizer:
loss += layers.apply_regularization(self.regularizer,
variables.trainable_variables())
return loss
示例4: _GatherGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def _GatherGrad(op, grad):
"""Gradient for Gather op."""
# params can be large, so colocate the shape calculation with it.
#
# params can be very large for sparse model, array_ops.shape raises
# exception on the Windows platform when any dimension is larger than
# int32. params_shape is not used in optimizer apply_sparse gradients,
# so it's fine to convert it back to int32 regardless of truncation.
params = op.inputs[0]
with ops.colocate_with(params):
params_shape = array_ops.shape(params, out_type=ops.dtypes.int64)
params_shape = math_ops.to_int32(params_shape)
# Build appropriately shaped IndexedSlices
indices = op.inputs[1]
size = array_ops.expand_dims(array_ops.size(indices), 0)
values_shape = array_ops.concat([size, params_shape[1:]], 0)
values = array_ops.reshape(grad, values_shape)
indices = array_ops.reshape(indices, size)
return [ops.IndexedSlices(values, indices, params_shape), None]
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:array_grad.py
示例5: ctc_batch_cost
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def ctc_batch_cost(y_true, y_pred, input_length, label_length):
"""Runs CTC loss algorithm on each batch element.
Arguments:
y_true: tensor `(samples, max_string_length)`
containing the truth labels.
y_pred: tensor `(samples, time_steps, num_categories)`
containing the prediction, or output of the softmax.
input_length: tensor `(samples, 1)` containing the sequence length for
each batch item in `y_pred`.
label_length: tensor `(samples, 1)` containing the sequence length for
each batch item in `y_true`.
Returns:
Tensor with shape (samples,1) containing the
CTC loss of each element.
"""
label_length = math_ops.to_int32(array_ops.squeeze(label_length))
input_length = math_ops.to_int32(array_ops.squeeze(input_length))
sparse_labels = math_ops.to_int32(
ctc_label_dense_to_sparse(y_true, label_length))
y_pred = math_ops.log(array_ops.transpose(y_pred, perm=[1, 0, 2]) + 1e-8)
return array_ops.expand_dims(
ctc.ctc_loss(
inputs=y_pred, labels=sparse_labels, sequence_length=input_length), 1)
示例6: one_hot_wrapper
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def one_hot_wrapper(num_classes, loss_fn):
"""Some loss functions take one-hot labels."""
def _loss(probs, targets):
if targets.get_shape().ndims > 1:
targets = array_ops.squeeze(targets, squeeze_dims=[1])
one_hot_labels = array_ops.one_hot(
math_ops.to_int32(targets),
num_classes,
on_value=1.,
off_value=0.,
dtype=dtypes.float32)
return loss_fn(probs, one_hot_labels)
return _loss
示例7: _squeeze_and_onehot
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def _squeeze_and_onehot(targets, depth):
targets = array_ops.squeeze(targets, squeeze_dims=[1])
return array_ops.one_hot(math_ops.to_int32(targets), depth)
示例8: _softmax_entropy
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def _softmax_entropy(probabilities, targets, weights=None):
return metric_ops.streaming_mean(
losses.sparse_softmax_cross_entropy(probabilities,
math_ops.to_int32(targets)),
weights=weights)
示例9: one_hot_mask
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def one_hot_mask(labels, num_classes, scope=None):
"""Compute 1-hot encodings for masks.
Given a label image, this computes the one hot encoding at
each pixel.
Args:
labels: (batch_size, width, height, 1) tensor containing labels.
num_classes: number of classes
scope: optional scope name
Returns:
Tensor of shape (batch_size, width, height, num_classes) with
a 1-hot encoding.
"""
with ops.name_scope(scope, "OneHotMask", [labels]):
height, width, depth = _shape(labels)
assert depth == 1
sparse_labels = math_ops.to_int32(array_ops.reshape(labels, [-1, 1]))
sparse_size, _ = _shape(sparse_labels)
indices = array_ops.reshape(math_ops.range(0, sparse_size, 1), [-1, 1])
concated = array_ops.concat([indices, sparse_labels], 1)
dense_result = sparse_ops.sparse_to_dense(concated,
[sparse_size, num_classes], 1.0,
0.0)
result = array_ops.reshape(dense_result, [height, width, num_classes])
return result
示例10: _class_predictions_streaming_mean
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def _class_predictions_streaming_mean(predictions, weights, class_id):
return metrics_lib.streaming_mean(
array_ops.where(
math_ops.equal(
math_ops.to_int32(class_id), math_ops.to_int32(predictions)),
array_ops.ones_like(predictions),
array_ops.zeros_like(predictions)),
weights=weights)
示例11: _class_labels_streaming_mean
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def _class_labels_streaming_mean(labels, weights, class_id):
return metrics_lib.streaming_mean(
array_ops.where(
math_ops.equal(
math_ops.to_int32(class_id), math_ops.to_int32(labels)),
array_ops.ones_like(labels), array_ops.zeros_like(labels)),
weights=weights)
示例12: get_best
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def get_best(self, n):
"""Return the indices and values of the n highest scores in the TopN."""
def refresh_shortlist():
"""Update the shortlist with the highest scores in id_to_score."""
new_scores, new_ids = nn_ops.top_k(self.id_to_score, self.shortlist_size)
smallest_new_score = math_ops.reduce_min(new_scores)
new_length = math_ops.reduce_sum(
math_ops.to_int32(math_ops.greater(new_scores, dtypes.float32.min)))
u1 = self.sl_ids.assign(
math_ops.to_int64(array_ops.concat([[new_length], new_ids], 0)))
u2 = self.sl_scores.assign(
array_ops.concat([[smallest_new_score], new_scores], 0))
self.last_ops = [u1, u2]
return control_flow_ops.group(u1, u2)
# We only need to refresh the shortlist if n is greater than the
# current shortlist size (which is stored in sl_ids[0]).
with ops.control_dependencies(self.last_ops):
cond_op = control_flow_ops.cond(n > self.sl_ids[0], refresh_shortlist,
control_flow_ops.no_op)
with ops.control_dependencies([cond_op]):
topk_values, topk_indices = nn_ops.top_k(
self.sl_scores,
math_ops.minimum(n, math_ops.to_int32(self.sl_ids[0])))
# topk_indices are the indices into the shortlist, we want to return
# the indices into id_to_score
gathered_indices = array_ops.gather(self.sl_ids, topk_indices)
return gathered_indices, topk_values
示例13: _top_k_generator
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def _top_k_generator(k):
def _top_k(probabilities, targets):
targets = math_ops.to_int32(targets)
if targets.get_shape().ndims > 1:
targets = array_ops.squeeze(targets, squeeze_dims=[1])
return metric_ops.streaming_mean(nn.in_top_k(probabilities, targets, k))
return _top_k
示例14: _compute_zeroone_score
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def _compute_zeroone_score(labels, predictions):
zeroone_score = math_ops.to_float(
math_ops.equal(
math_ops.reduce_sum(
math_ops.to_int32(math_ops.equal(labels, predictions))),
array_ops.shape(labels)[0]))
return zeroone_score
示例15: one_hot_wrapper
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_int32 [as 別名]
def one_hot_wrapper(num_classes, loss_fn):
"""Some loss functions take one-hot labels."""
def _loss(probs, targets):
one_hot_labels = array_ops.one_hot(
math_ops.to_int32(targets), num_classes,
on_value=1., off_value=0., dtype=dtypes.float32)
return loss_fn(probs, one_hot_labels)
return _loss