本文整理匯總了Python中tensorflow.python.ops.math_ops.to_float方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.to_float方法的具體用法?Python math_ops.to_float怎麽用?Python math_ops.to_float使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.to_float方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _covariance
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def _covariance(x, diag):
"""Defines the covariance operation of a matrix.
Args:
x: a matrix Tensor. Dimension 0 should contain the number of examples.
diag: if True, it computes the diagonal covariance.
Returns:
A Tensor representing the covariance of x. In the case of
diagonal matrix just the diagonal is returned.
"""
num_points = math_ops.to_float(array_ops.shape(x)[0])
x -= math_ops.reduce_mean(x, 0, keep_dims=True)
if diag:
cov = math_ops.reduce_sum(
math_ops.square(x), 0, keep_dims=True) / (num_points - 1)
else:
cov = math_ops.matmul(x, x, transpose_a=True) / (num_points - 1)
return cov
示例2: _define_full_covariance_probs
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def _define_full_covariance_probs(self, shard_id, shard):
"""Defines the full covariance probabilties per example in a class.
Updates a matrix with dimension num_examples X num_classes.
Args:
shard_id: id of the current shard.
shard: current data shard, 1 X num_examples X dimensions.
"""
diff = shard - self._means
cholesky = linalg_ops.cholesky(self._covs + self._min_var)
log_det_covs = 2.0 * math_ops.reduce_sum(
math_ops.log(array_ops.matrix_diag_part(cholesky)), 1)
x_mu_cov = math_ops.square(
linalg_ops.matrix_triangular_solve(
cholesky, array_ops.transpose(
diff, perm=[0, 2, 1]), lower=True))
diag_m = array_ops.transpose(math_ops.reduce_sum(x_mu_cov, 1))
self._probs[shard_id] = -0.5 * (diag_m + math_ops.to_float(self._dimensions)
* math_ops.log(2 * np.pi) + log_det_covs)
示例3: _lengths_to_masks
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def _lengths_to_masks(lengths, max_length):
"""Creates a binary matrix that can be used to mask away padding.
Args:
lengths: A vector of integers representing lengths.
max_length: An integer indicating the maximum length. All values in
lengths should be less than max_length.
Returns:
masks: Masks that can be used to get rid of padding.
"""
tiled_ranges = array_ops.tile(
array_ops.expand_dims(math_ops.range(max_length), 0),
[array_ops.shape(lengths)[0], 1])
lengths = array_ops.expand_dims(lengths, 1)
masks = math_ops.to_float(
math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
return masks
示例4: loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def loss(self, data, labels):
"""The loss to minimize while training."""
if self.is_regression:
diff = self.training_inference_graph(data) - math_ops.to_float(labels)
mean_squared_error = math_ops.reduce_mean(diff * diff)
root_mean_squared_error = math_ops.sqrt(mean_squared_error, name="loss")
loss = root_mean_squared_error
else:
loss = math_ops.reduce_mean(
nn_ops.sparse_softmax_cross_entropy_with_logits(
labels=array_ops.squeeze(math_ops.to_int32(labels)),
logits=self.training_inference_graph(data)),
name="loss")
if self.regularizer:
loss += layers.apply_regularization(self.regularizer,
variables.trainable_variables())
return loss
示例5: _length_penalty
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def _length_penalty(sequence_lengths, penalty_factor):
"""Calculates the length penalty. See https://arxiv.org/abs/1609.08144.
Args:
sequence_lengths: The sequence length of all hypotheses, a tensor
of shape [beam_size, vocab_size].
penalty_factor: A scalar that weights the length penalty.
Returns:
The length penalty factor, a tensor fo shape [beam_size].
"""
penalty_factor = ops.convert_to_tensor(penalty_factor, name="penalty_factor")
penalty_factor.set_shape(()) # penalty should be a scalar.
static_penalty = tensor_util.constant_value(penalty_factor)
if static_penalty is not None and static_penalty == 0:
return 1.0
return math_ops.div((5. + math_ops.to_float(sequence_lengths))
**penalty_factor, (5. + 1.)**penalty_factor)
示例6: _streaming_auc
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def _streaming_auc(predictions, labels, weights=None, class_id=None,
curve="ROC"):
# pylint: disable=missing-docstring
predictions = math_ops.to_float(predictions)
if labels.dtype.base_dtype != dtypes.bool:
logging.warning("Casting %s labels to bool.", labels.dtype)
labels = math_ops.cast(labels, dtypes.bool)
weights = _float_weights_or_none(weights)
if weights is not None:
weights = weights_broadcast_ops.broadcast_weights(weights, predictions)
if class_id is not None:
if weights is not None:
weights = weights[:, class_id]
predictions = predictions[:, class_id]
labels = labels[:, class_id]
return metrics_lib.streaming_auc(
predictions, labels, weights=weights, curve=curve)
示例7: create_test_input
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def create_test_input(batch_size, height, width, channels):
"""Create test input tensor.
Args:
batch_size: The number of images per batch or `None` if unknown.
height: The height of each image or `None` if unknown.
width: The width of each image or `None` if unknown.
channels: The number of channels per image or `None` if unknown.
Returns:
Either a placeholder `Tensor` of dimension
[batch_size, height, width, channels] if any of the inputs are `None` or a
constant `Tensor` with the mesh grid values along the spatial dimensions.
"""
if None in [batch_size, height, width, channels]:
return array_ops.placeholder(dtypes.float32,
(batch_size, height, width, channels))
else:
return math_ops.to_float(
np.tile(
np.reshape(
np.reshape(np.arange(height), [height, 1]) + np.reshape(
np.arange(width), [1, width]), [1, height, width, 1]),
[batch_size, 1, 1, channels]))
示例8: _IRFFTGradHelper
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def _IRFFTGradHelper(rank, rfft_fn):
"""Returns a gradient function for an IRFFT of the provided rank."""
# Can't happen because we don't register a gradient for IRFFT3D.
assert rank in (1, 2), "Gradient for IRFFT3D is not implemented."
def _Grad(op, grad):
"""A gradient function for IRFFT with the provided `rank` and `rfft_fn`."""
# Generate a simple mask like [1.0, 2.0, ..., 2.0, 1.0] for even-length FFTs
# and [1.0, 2.0, ..., 2.0] for odd-length FFTs. To reduce extra ops in the
# graph we special-case the situation where the FFT length and last
# dimension of the input are known at graph construction time.
fft_length = op.inputs[1]
is_odd = math_ops.mod(fft_length[-1], 2)
input_last_dimension = array_ops.shape(op.inputs[0])[-1]
mask = array_ops.concat(
[[1.0], 2.0 * array_ops.ones([input_last_dimension - 2 + is_odd]),
array_ops.ones([1 - is_odd])], 0)
rsize = math_ops.reciprocal(math_ops.to_float(_FFTSizeForGrad(grad, rank)))
# The gradient of IRFFT is the RFFT of the incoming gradient times a scaling
# factor and a mask. The mask scales the gradient for the Hermitian
# symmetric components of the RFFT by a factor of two, since these
# components are de-duplicated in the RFFT.
rfft = rfft_fn(grad, fft_length)
return rfft * math_ops.cast(rsize * mask, dtypes.complex64), None
return _Grad
示例9: _num_present
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def _num_present(losses, weights, per_batch=False):
"""Computes the number of elements in the loss function induced by `weights`.
A given weights tensor induces different numbers of usable elements in the
`losses` tensor. The `weights` tensor is broadcast across `losses` for all
possible dimensions. For example, if `losses` is a tensor of dimension
`[4, 5, 6, 3]` and `weights` is a tensor of shape `[4, 5]`, then `weights` is,
in effect, tiled to match the shape of `losses`. Following this effective
tile, the total number of present elements is the number of non-zero weights.
Args:
losses: `Tensor` of shape `[batch_size, d1, ... dN]`.
weights: `Tensor` of shape `[]`, `[batch_size]` or
`[batch_size, d1, ... dK]`, where K < N.
per_batch: Whether to return the number of elements per batch or as a sum
total.
Returns:
The number of present (non-zero) elements in the losses tensor. If
`per_batch` is `True`, the value is returned as a tensor of size
`[batch_size]`. Otherwise, a single scalar tensor is returned.
"""
with ops.name_scope(None, "num_present", (losses, weights)) as scope:
weights = math_ops.to_float(weights)
present = array_ops.where(
math_ops.equal(weights, 0.0),
array_ops.zeros_like(weights),
array_ops.ones_like(weights))
present = weights_broadcast_ops.broadcast_weights(present, losses)
if per_batch:
return math_ops.reduce_sum(
present, axis=math_ops.range(1, array_ops.rank(present)),
keep_dims=True, name=scope)
return math_ops.reduce_sum(present, name=scope)
示例10: absolute_difference
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def absolute_difference(
labels, predictions, weights=1.0, scope=None,
loss_collection=ops.GraphKeys.LOSSES,
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
"""Adds an Absolute Difference loss to the training procedure.
`weights` acts as a coefficient for the loss. If a scalar is provided, then
the loss is simply scaled by the given value. If `weights` is a `Tensor` of
shape `[batch_size]`, then the total loss for each sample of the batch is
rescaled by the corresponding element in the `weights` vector. If the shape of
`weights` matches the shape of `predictions`, then the loss of each
measurable element of `predictions` is scaled by the corresponding value of
`weights`.
Args:
labels: The ground truth output tensor, same dimensions as 'predictions'.
predictions: The predicted outputs.
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`labels`, and must be broadcastable to `labels` (i.e., all dimensions must
be either `1`, or the same as the corresponding `losses` dimension).
scope: The scope for the operations performed in computing the loss.
loss_collection: collection to which this loss will be added.
reduction: Type of reduction to apply to loss.
Returns:
Weighted loss float `Tensor`. If `reduction` is `NONE`, this has the same
shape as `labels`; otherwise, it is scalar.
Raises:
ValueError: If the shape of `predictions` doesn't match that of `labels` or
if the shape of `weights` is invalid.
"""
with ops.name_scope(scope, "absolute_difference",
(predictions, labels, weights)) as scope:
predictions = math_ops.to_float(predictions)
labels = math_ops.to_float(labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
losses = math_ops.abs(math_ops.subtract(predictions, labels))
return compute_weighted_loss(
losses, weights, scope, loss_collection, reduction=reduction)
示例11: cosine_distance
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def cosine_distance(
labels, predictions, dim=None, weights=1.0, scope=None,
loss_collection=ops.GraphKeys.LOSSES,
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
"""Adds a cosine-distance loss to the training procedure.
Note that the function assumes that `predictions` and `labels` are already
unit-normalized.
Args:
labels: `Tensor` whose shape matches 'predictions'
predictions: An arbitrary matrix.
dim: The dimension along which the cosine distance is computed.
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`labels`, and must be broadcastable to `labels` (i.e., all dimensions must
be either `1`, or the same as the corresponding `losses` dimension).
scope: The scope for the operations performed in computing the loss.
loss_collection: collection to which this loss will be added.
reduction: Type of reduction to apply to loss.
Returns:
Weighted loss float `Tensor`. If `reduction` is `NONE`, this has the same
shape as `labels`; otherwise, it is scalar.
Raises:
ValueError: If `predictions` shape doesn't match `labels` shape, or
`weights` is `None`.
"""
if dim is None:
raise ValueError("`dim` cannot be None.")
with ops.name_scope(scope, "cosine_distance_loss",
(predictions, labels, weights)) as scope:
predictions = math_ops.to_float(predictions)
labels = math_ops.to_float(labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
radial_diffs = math_ops.multiply(predictions, labels)
losses = 1 - math_ops.reduce_sum(radial_diffs, axis=(dim,), keep_dims=True)
return compute_weighted_loss(
losses, weights, scope, loss_collection, reduction=reduction)
示例12: hinge_loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def hinge_loss(labels, logits, weights=1.0, scope=None,
loss_collection=ops.GraphKeys.LOSSES,
reduction=Reduction.SUM_BY_NONZERO_WEIGHTS):
"""Adds a hinge loss to the training procedure.
Args:
labels: The ground truth output tensor. Its shape should match the shape of
logits. The values of the tensor are expected to be 0.0 or 1.0.
logits: The logits, a float tensor.
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`labels`, and must be broadcastable to `labels` (i.e., all dimensions must
be either `1`, or the same as the corresponding `losses` dimension).
scope: The scope for the operations performed in computing the loss.
loss_collection: collection to which the loss will be added.
reduction: Type of reduction to apply to loss.
Returns:
Weighted loss float `Tensor`. If `reduction` is `NONE`, this has the same
shape as `labels`; otherwise, it is scalar.
Raises:
ValueError: If the shapes of `logits` and `labels` don't match.
"""
with ops.name_scope(scope, "hinge_loss", (logits, labels)) as scope:
logits = math_ops.to_float(logits)
labels = math_ops.to_float(labels)
logits.get_shape().assert_is_compatible_with(labels.get_shape())
# We first need to convert binary labels to -1/1 labels (as floats).
all_ones = array_ops.ones_like(labels)
labels = math_ops.subtract(2 * labels, all_ones)
losses = nn_ops.relu(
math_ops.subtract(all_ones, math_ops.multiply(labels, logits)))
return compute_weighted_loss(
losses, weights, scope, loss_collection, reduction=reduction)
示例13: _transform_feature
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def _transform_feature(self, inputs):
input_tensor = inputs.get(self.key)
if isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
raise ValueError(
'The corresponding Tensor of numerical column must be a Tensor. '
'SparseTensor is not supported. key: {}'.format(self.key))
if self.normalizer_fn is not None:
input_tensor = self.normalizer_fn(input_tensor)
return math_ops.to_float(input_tensor)
示例14: average_size
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def average_size(self):
"""Constructs a TF graph for evaluating the average size of a forest.
Returns:
The average number of nodes over the trees.
"""
sizes = []
for i in range(self.params.num_trees):
with ops.device(self.variables.device_dummies[i].device):
sizes.append(self.trees[i].size())
return math_ops.reduce_mean(math_ops.to_float(array_ops.stack(sizes)))
# pylint: disable=unused-argument
示例15: _get_loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import to_float [as 別名]
def _get_loss(self, features, labels):
"""Constructs, caches, and returns the inference-based loss."""
if self._loss is not None:
return self._loss
def _average_loss():
probs = self.inference_graph(features)
return math_ops.reduce_sum(self.loss_fn(
probs, labels)) / math_ops.to_float(array_ops.shape(labels)[0])
self._loss = control_flow_ops.cond(
self.average_size() > 0, _average_loss,
lambda: constant_op.constant(sys.maxsize, dtype=dtypes.float32))
return self._loss