本文整理匯總了Python中tensorflow.python.ops.math_ops.tanh方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.tanh方法的具體用法?Python math_ops.tanh怎麽用?Python math_ops.tanh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.tanh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0,
state_is_tuple=True, activation=None, reuse=None):
"""Initialize the basic LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
activation: Activation function of the inner states. Default: `tanh`.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
"""
super(BasicLSTMCell, self).__init__(_reuse=reuse)
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation or math_ops.tanh
示例2: _attention
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def _attention(self, query, attn_states):
conv2d = nn_ops.conv2d
reduce_sum = math_ops.reduce_sum
softmax = nn_ops.softmax
tanh = math_ops.tanh
with vs.variable_scope("attention"):
k = vs.get_variable(
"attn_w", [1, 1, self._attn_size, self._attn_vec_size])
v = vs.get_variable("attn_v", [self._attn_vec_size])
hidden = array_ops.reshape(attn_states,
[-1, self._attn_length, 1, self._attn_size])
hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
y = _linear(query, self._attn_vec_size, True)
y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
a = softmax(s)
d = reduce_sum(
array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
new_attns = array_ops.reshape(d, [-1, self._attn_size])
new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
return new_attns, new_attn_states
示例3: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, input_size=None,
use_peepholes=False, cell_clip=None,
initializer=None, num_proj=None, proj_clip=None,
num_unit_shards=1, num_proj_shards=1,
forget_bias=1.0, state_is_tuple=False,
activation=tanh):
# if not state_is_tuple:
# logging.warn(
# "%s: Using a concatenated state is slower and will soon be "
# "deprecated. Use state_is_tuple=True." % self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated." % self)
#self._use_peepholes = use_peepholes
#self._cell_clip = cell_clip
#self._initializer = initializer
#self._num_proj = num_proj
#self._num_unit_shards = num_unit_shards
#self._num_proj_shards = num_proj_shards
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
示例4: _attention
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def _attention(self, query, attn_states):
conv2d = nn_ops.conv2d
reduce_sum = math_ops.reduce_sum
softmax = nn_ops.softmax
tanh = math_ops.tanh
with vs.variable_scope("attention"):
k = vs.get_variable(
"attn_w", [1, 1, self._attn_size, self._attn_vec_size])
v = vs.get_variable("attn_v", [self._attn_vec_size])
hidden = array_ops.reshape(attn_states,
[-1, self._attn_length, 1, self._attn_size])
hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
if self._linear3 is None:
self._linear3 = _Linear(query, self._attn_vec_size, True)
y = self._linear3(query)
y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
a = softmax(s)
d = reduce_sum(
array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
new_attns = array_ops.reshape(d, [-1, self._attn_size])
new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
return new_attns, new_attn_states
示例5: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, initializer=None, forget_bias=1.0,
activation=math_ops.tanh, reuse=None):
"""Initialize the parameters for an UGRNN cell.
Args:
num_units: int, The number of units in the UGRNN cell
initializer: (optional) The initializer to use for the weight matrices.
forget_bias: (optional) float, default 1.0, The initial bias of the
forget gate, used to reduce the scale of forgetting at the beginning
of the training.
activation: (optional) Activation function of the inner states.
Default is `tf.tanh`.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
"""
super(UGRNNCell, self).__init__(_reuse=reuse)
self._num_units = num_units
self._initializer = initializer
self._forget_bias = forget_bias
self._activation = activation
self._reuse = reuse
self._linear = None
示例6: call
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def call(self, inputs, state, scope=None):
cell, hidden = state
new_hidden = _conv([inputs, hidden],
self._kernel_shape,
4*self._output_channels,
self._use_bias)
gates = array_ops.split(value=new_hidden,
num_or_size_splits=4,
axis=self._conv_ndims+1)
input_gate, new_input, forget_gate, output_gate = gates
new_cell = math_ops.sigmoid(forget_gate + self._forget_bias) * cell
new_cell += math_ops.sigmoid(input_gate) * math_ops.tanh(new_input)
output = math_ops.tanh(new_cell) * self._activation(output_gate)
if self._skip_connection:
output = array_ops.concat([output, inputs], axis=-1)
new_state = rnn_cell_impl.LSTMStateTuple(new_cell, output)
return output, new_state
示例7: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0, input_size=None,
state_is_tuple=True, activation=tanh):
"""Initialize the basic LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
activation: Activation function of the inner states.
"""
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
示例8: _attention
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def _attention(self, query, attn_states):
conv2d = nn_ops.conv2d
reduce_sum = math_ops.reduce_sum
softmax = nn_ops.softmax
tanh = math_ops.tanh
with vs.variable_scope("Attention"):
k = vs.get_variable("AttnW", [1, 1, self._attn_size, self._attn_vec_size])
v = vs.get_variable("AttnV", [self._attn_vec_size])
hidden = array_ops.reshape(attn_states,
[-1, self._attn_length, 1, self._attn_size])
hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
y = _linear(query, self._attn_vec_size, True)
y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
a = softmax(s)
d = reduce_sum(
array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
new_attns = array_ops.reshape(d, [-1, self._attn_size])
new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
return new_attns, new_attn_states
示例9: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0, input_size=None,
state_is_tuple=True, activation=tanh):
"""Initialize the basic LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
activation: Activation function of the inner states.
"""
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
示例10: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, shape, filter_size, num_features, forget_bias=1.0, input_size=None,
state_is_tuple=False, activation=tf.nn.tanh):
"""Initialize the basic Conv LSTM cell.
Args:
shape: int tuple thats the height and width of the cell
filter_size: int tuple thats the height and width of the filter
num_features: int thats the depth of the cell
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
activation: Activation function of the inner states.
"""
#if not state_is_tuple:
#logging.warn("%s: Using a concatenated state is slower and will soon be "
# "deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self.shape = shape
self.filter_size = filter_size
self.num_features = num_features
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
示例11: call
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def call(self, inputs, state, scope=None):
cell, hidden = state
new_hidden = _conv([inputs, hidden],
self._kernel_shape,
4*self._output_channels,
self._use_bias)
gates = array_ops.split(value=new_hidden,
num_or_size_splits=4,
axis=self._conv_ndims+1)
input_gate, new_input, forget_gate, output_gate = gates
new_cell = math_ops.sigmoid(forget_gate + self._forget_bias) * cell
new_cell += math_ops.sigmoid(input_gate) * math_ops.tanh(new_input)
output = math_ops.tanh(new_cell) * math_ops.sigmoid(output_gate)
if self._skip_connection:
output = array_ops.concat([output, inputs], axis=-1)
new_state = rnn_cell_impl.LSTMStateTuple(new_cell, output)
return output, new_state
示例12: _attn_add_fun
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def _attn_add_fun(v, keys, query):
return math_ops.reduce_sum(v * math_ops.tanh(keys + query), [2])
示例13: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0,
input_size=None, activation=math_ops.tanh,
layer_norm=True, norm_gain=1.0, norm_shift=0.0,
dropout_keep_prob=1.0, dropout_prob_seed=None,
reuse=None):
"""Initializes the basic LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
activation: Activation function of the inner states.
layer_norm: If `True`, layer normalization will be applied.
norm_gain: float, The layer normalization gain initial value. If
`layer_norm` has been set to `False`, this argument will be ignored.
norm_shift: float, The layer normalization shift initial value. If
`layer_norm` has been set to `False`, this argument will be ignored.
dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
recurrent dropout probability value. If float and 1.0, no dropout will
be applied.
dropout_prob_seed: (optional) integer, the randomness seed.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
"""
super(LayerNormBasicLSTMCell, self).__init__(_reuse=reuse)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._activation = activation
self._forget_bias = forget_bias
self._keep_prob = dropout_keep_prob
self._seed = dropout_prob_seed
self._layer_norm = layer_norm
self._g = norm_gain
self._b = norm_shift
self._reuse = reuse
示例14: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0,
input_size=None, activation=math_ops.tanh,
layer_norm=True, norm_gain=1.0, norm_shift=0.0,
dropout_keep_prob=1.0, dropout_prob_seed=None):
"""Initializes the basic LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
activation: Activation function of the inner states.
layer_norm: If `True`, layer normalization will be applied.
norm_gain: float, The layer normalization gain initial value. If
`layer_norm` has been set to `False`, this argument will be ignored.
norm_shift: float, The layer normalization shift initial value. If
`layer_norm` has been set to `False`, this argument will be ignored.
dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
recurrent dropout probability value. If float and 1.0, no dropout will
be applied.
dropout_prob_seed: (optional) integer, the randomness seed.
"""
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._activation = activation
self._forget_bias = forget_bias
self._keep_prob = dropout_keep_prob
self._seed = dropout_prob_seed
self._layer_norm = layer_norm
self._g = norm_gain
self._b = norm_shift
示例15: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, input_size=None, activation=tanh):
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._activation = activation