當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.tanh方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.tanh方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.tanh方法的具體用法?Python math_ops.tanh怎麽用?Python math_ops.tanh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.tanh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0,
               state_is_tuple=True, activation=None, reuse=None):
    """Initialize the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      state_is_tuple: If True, accepted and returned states are 2-tuples of
        the `c_state` and `m_state`.  If False, they are concatenated
        along the column axis.  The latter behavior will soon be deprecated.
      activation: Activation function of the inner states.  Default: `tanh`.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    super(BasicLSTMCell, self).__init__(_reuse=reuse)
    if not state_is_tuple:
      logging.warn("%s: Using a concatenated state is slower and will soon be "
                   "deprecated.  Use state_is_tuple=True.", self)
    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation or math_ops.tanh 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:rnn_cell_impl.py

示例2: _attention

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def _attention(self, query, attn_states):
    conv2d = nn_ops.conv2d
    reduce_sum = math_ops.reduce_sum
    softmax = nn_ops.softmax
    tanh = math_ops.tanh

    with vs.variable_scope("attention"):
      k = vs.get_variable(
          "attn_w", [1, 1, self._attn_size, self._attn_vec_size])
      v = vs.get_variable("attn_v", [self._attn_vec_size])
      hidden = array_ops.reshape(attn_states,
                                 [-1, self._attn_length, 1, self._attn_size])
      hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
      y = _linear(query, self._attn_vec_size, True)
      y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
      s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
      a = softmax(s)
      d = reduce_sum(
          array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
      new_attns = array_ops.reshape(d, [-1, self._attn_size])
      new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
      return new_attns, new_attn_states 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:rnn_cell.py

示例3: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, input_size=None,
               use_peepholes=False, cell_clip=None,
               initializer=None, num_proj=None, proj_clip=None,
               num_unit_shards=1, num_proj_shards=1,
               forget_bias=1.0, state_is_tuple=False,
               activation=tanh):

#    if not state_is_tuple:
#      logging.warn(
#          "%s: Using a concatenated state is slower and will soon be "
#          "deprecated.  Use state_is_tuple=True." % self)
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated." % self)

    #self._use_peepholes = use_peepholes
    #self._cell_clip = cell_clip
    #self._initializer = initializer
    #self._num_proj = num_proj
    #self._num_unit_shards = num_unit_shards
    #self._num_proj_shards = num_proj_shards

    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation 
開發者ID:GuangmingZhu,項目名稱:Conv3D_BICLSTM,代碼行數:27,代碼來源:ConvLSTMCell.py

示例4: _attention

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def _attention(self, query, attn_states):
    conv2d = nn_ops.conv2d
    reduce_sum = math_ops.reduce_sum
    softmax = nn_ops.softmax
    tanh = math_ops.tanh

    with vs.variable_scope("attention"):
      k = vs.get_variable(
          "attn_w", [1, 1, self._attn_size, self._attn_vec_size])
      v = vs.get_variable("attn_v", [self._attn_vec_size])
      hidden = array_ops.reshape(attn_states,
                                 [-1, self._attn_length, 1, self._attn_size])
      hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
      if self._linear3 is None:
        self._linear3 = _Linear(query, self._attn_vec_size, True)
      y = self._linear3(query)
      y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
      s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
      a = softmax(s)
      d = reduce_sum(
          array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
      new_attns = array_ops.reshape(d, [-1, self._attn_size])
      new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
      return new_attns, new_attn_states 
開發者ID:shaohua0116,項目名稱:Multiview2Novelview,代碼行數:26,代碼來源:rnn_cell.py

示例5: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, initializer=None, forget_bias=1.0,
               activation=math_ops.tanh, reuse=None):
    """Initialize the parameters for an UGRNN cell.
    Args:
      num_units: int, The number of units in the UGRNN cell
      initializer: (optional) The initializer to use for the weight matrices.
      forget_bias: (optional) float, default 1.0, The initial bias of the
        forget gate, used to reduce the scale of forgetting at the beginning
        of the training.
      activation: (optional) Activation function of the inner states.
        Default is `tf.tanh`.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    super(UGRNNCell, self).__init__(_reuse=reuse)
    self._num_units = num_units
    self._initializer = initializer
    self._forget_bias = forget_bias
    self._activation = activation
    self._reuse = reuse
    self._linear = None 
開發者ID:shaohua0116,項目名稱:Multiview2Novelview,代碼行數:24,代碼來源:rnn_cell.py

示例6: call

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def call(self, inputs, state, scope=None):
    cell, hidden = state
    new_hidden = _conv([inputs, hidden],
                       self._kernel_shape,
                       4*self._output_channels,
                       self._use_bias)
    gates = array_ops.split(value=new_hidden,
                            num_or_size_splits=4,
                            axis=self._conv_ndims+1)

    input_gate, new_input, forget_gate, output_gate = gates
    new_cell = math_ops.sigmoid(forget_gate + self._forget_bias) * cell
    new_cell += math_ops.sigmoid(input_gate) * math_ops.tanh(new_input)
    output = math_ops.tanh(new_cell) * self._activation(output_gate)

    if self._skip_connection:
      output = array_ops.concat([output, inputs], axis=-1)
    new_state = rnn_cell_impl.LSTMStateTuple(new_cell, output)
    return output, new_state 
開發者ID:shaohua0116,項目名稱:Multiview2Novelview,代碼行數:21,代碼來源:rnn_cell.py

示例7: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0, input_size=None,
               state_is_tuple=True, activation=tanh):
    """Initialize the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      state_is_tuple: If True, accepted and returned states are 2-tuples of
        the `c_state` and `m_state`.  If False, they are concatenated
        along the column axis.  The latter behavior will soon be deprecated.
      activation: Activation function of the inner states.
    """
    if not state_is_tuple:
      logging.warn("%s: Using a concatenated state is slower and will soon be "
                   "deprecated.  Use state_is_tuple=True.", self)
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)
    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation 
開發者ID:Guanghan,項目名稱:ROLO,代碼行數:24,代碼來源:rnn_cell.py

示例8: _attention

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def _attention(self, query, attn_states):
    conv2d = nn_ops.conv2d
    reduce_sum = math_ops.reduce_sum
    softmax = nn_ops.softmax
    tanh = math_ops.tanh

    with vs.variable_scope("Attention"):
      k = vs.get_variable("AttnW", [1, 1, self._attn_size, self._attn_vec_size])
      v = vs.get_variable("AttnV", [self._attn_vec_size])
      hidden = array_ops.reshape(attn_states,
                                 [-1, self._attn_length, 1, self._attn_size])
      hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
      y = _linear(query, self._attn_vec_size, True)
      y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
      s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
      a = softmax(s)
      d = reduce_sum(
          array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
      new_attns = array_ops.reshape(d, [-1, self._attn_size])
      new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
      return new_attns, new_attn_states 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:rnn_cell.py

示例9: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0, input_size=None,
                             state_is_tuple=True, activation=tanh):
        """Initialize the basic LSTM cell.

        Args:
            num_units: int, The number of units in the LSTM cell.
            forget_bias: float, The bias added to forget gates (see above).
            input_size: Deprecated and unused.
            state_is_tuple: If True, accepted and returned states are 2-tuples of
                the `c_state` and `m_state`.    If False, they are concatenated
                along the column axis.    The latter behavior will soon be deprecated.
            activation: Activation function of the inner states.
        """
        if not state_is_tuple:
            logging.warn("%s: Using a concatenated state is slower and will soon be "
                                     "deprecated.    Use state_is_tuple=True.", self)
        if input_size is not None:
            logging.warn("%s: The input_size parameter is deprecated.", self)
        self._num_units = num_units
        self._forget_bias = forget_bias
        self._state_is_tuple = state_is_tuple
        self._activation = activation 
開發者ID:thu-coai,項目名稱:ecm,代碼行數:24,代碼來源:rnn_cell.py

示例10: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, shape, filter_size, num_features, forget_bias=1.0, input_size=None,
               state_is_tuple=False, activation=tf.nn.tanh):
    """Initialize the basic Conv LSTM cell.
    Args:
      shape: int tuple thats the height and width of the cell
      filter_size: int tuple thats the height and width of the filter
      num_features: int thats the depth of the cell 
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      state_is_tuple: If True, accepted and returned states are 2-tuples of
        the `c_state` and `m_state`.  If False, they are concatenated
        along the column axis.  The latter behavior will soon be deprecated.
      activation: Activation function of the inner states.
    """
    #if not state_is_tuple:
      #logging.warn("%s: Using a concatenated state is slower and will soon be "
      #             "deprecated.  Use state_is_tuple=True.", self)
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)
    self.shape = shape 
    self.filter_size = filter_size
    self.num_features = num_features 
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation 
開發者ID:kuleshov,項目名稱:audio-super-res,代碼行數:27,代碼來源:convrnn.py

示例11: call

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def call(self, inputs, state, scope=None):
    cell, hidden = state
    new_hidden = _conv([inputs, hidden],
                       self._kernel_shape,
                       4*self._output_channels,
                       self._use_bias)
    gates = array_ops.split(value=new_hidden,
                            num_or_size_splits=4,
                            axis=self._conv_ndims+1)

    input_gate, new_input, forget_gate, output_gate = gates
    new_cell = math_ops.sigmoid(forget_gate + self._forget_bias) * cell
    new_cell += math_ops.sigmoid(input_gate) * math_ops.tanh(new_input)
    output = math_ops.tanh(new_cell) * math_ops.sigmoid(output_gate)

    if self._skip_connection:
      output = array_ops.concat([output, inputs], axis=-1)
    new_state = rnn_cell_impl.LSTMStateTuple(new_cell, output)
    return output, new_state 
開發者ID:kuleshov,項目名稱:audio-super-res,代碼行數:21,代碼來源:convrnn.py

示例12: _attn_add_fun

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def _attn_add_fun(v, keys, query):
  return math_ops.reduce_sum(v * math_ops.tanh(keys + query), [2]) 
開發者ID:kepei1106,項目名稱:SentenceFunction,代碼行數:4,代碼來源:my_attention_decoder_fn.py

示例13: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0,
               input_size=None, activation=math_ops.tanh,
               layer_norm=True, norm_gain=1.0, norm_shift=0.0,
               dropout_keep_prob=1.0, dropout_prob_seed=None,
               reuse=None):
    """Initializes the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      activation: Activation function of the inner states.
      layer_norm: If `True`, layer normalization will be applied.
      norm_gain: float, The layer normalization gain initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      norm_shift: float, The layer normalization shift initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
        recurrent dropout probability value. If float and 1.0, no dropout will
        be applied.
      dropout_prob_seed: (optional) integer, the randomness seed.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    super(LayerNormBasicLSTMCell, self).__init__(_reuse=reuse)

    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)

    self._num_units = num_units
    self._activation = activation
    self._forget_bias = forget_bias
    self._keep_prob = dropout_keep_prob
    self._seed = dropout_prob_seed
    self._layer_norm = layer_norm
    self._g = norm_gain
    self._b = norm_shift
    self._reuse = reuse 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:41,代碼來源:rnn_cell.py

示例14: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, forget_bias=1.0,
               input_size=None, activation=math_ops.tanh,
               layer_norm=True, norm_gain=1.0, norm_shift=0.0,
               dropout_keep_prob=1.0, dropout_prob_seed=None):
    """Initializes the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      activation: Activation function of the inner states.
      layer_norm: If `True`, layer normalization will be applied.
      norm_gain: float, The layer normalization gain initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      norm_shift: float, The layer normalization shift initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
        recurrent dropout probability value. If float and 1.0, no dropout will
        be applied.
      dropout_prob_seed: (optional) integer, the randomness seed.
    """

    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)

    self._num_units = num_units
    self._activation = activation
    self._forget_bias = forget_bias
    self._keep_prob = dropout_keep_prob
    self._seed = dropout_prob_seed
    self._layer_norm = layer_norm
    self._g = norm_gain
    self._b = norm_shift 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:35,代碼來源:rnn_cell.py

示例15: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import tanh [as 別名]
def __init__(self, num_units, input_size=None, activation=tanh):
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)
    self._num_units = num_units
    self._activation = activation 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:7,代碼來源:core_rnn_cell_impl.py


注:本文中的tensorflow.python.ops.math_ops.tanh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。