本文整理匯總了Python中tensorflow.python.ops.math_ops.square方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.square方法的具體用法?Python math_ops.square怎麽用?Python math_ops.square使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.square方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _kl_normal_normal
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _kl_normal_normal(n_a, n_b, name=None):
"""Calculate the batched KL divergence KL(n_a || n_b) with n_a and n_b Normal.
Args:
n_a: instance of a Normal distribution object.
n_b: instance of a Normal distribution object.
name: (optional) Name to use for created operations.
default is "kl_normal_normal".
Returns:
Batchwise KL(n_a || n_b)
"""
with ops.name_scope(name, "kl_normal_normal", [n_a.loc, n_b.loc]):
one = constant_op.constant(1, dtype=n_a.dtype)
two = constant_op.constant(2, dtype=n_a.dtype)
half = constant_op.constant(0.5, dtype=n_a.dtype)
s_a_squared = math_ops.square(n_a.scale)
s_b_squared = math_ops.square(n_b.scale)
ratio = s_a_squared / s_b_squared
return (math_ops.square(n_a.loc - n_b.loc) / (two * s_b_squared) +
half * (ratio - one - math_ops.log(ratio)))
示例2: _compute_euclidean_distance
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _compute_euclidean_distance(cls, inputs, clusters):
"""Computes Euclidean distance between each input and each cluster center.
Args:
inputs: list of input Tensors.
clusters: cluster Tensor.
Returns:
list of Tensors, where each element corresponds to each element in inputs.
The value is the distance of each row to all the cluster centers.
"""
output = []
for inp in inputs:
with ops.colocate_with(inp):
# Computes Euclidean distance. Note the first and third terms are
# broadcast additions.
squared_distance = (math_ops.reduce_sum(
math_ops.square(inp), 1, keep_dims=True) - 2 * math_ops.matmul(
inp, clusters, transpose_b=True) + array_ops.transpose(
math_ops.reduce_sum(
math_ops.square(clusters), 1, keep_dims=True)))
output.append(squared_distance)
return output
示例3: _covariance
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _covariance(x, diag):
"""Defines the covariance operation of a matrix.
Args:
x: a matrix Tensor. Dimension 0 should contain the number of examples.
diag: if True, it computes the diagonal covariance.
Returns:
A Tensor representing the covariance of x. In the case of
diagonal matrix just the diagonal is returned.
"""
num_points = math_ops.to_float(array_ops.shape(x)[0])
x -= math_ops.reduce_mean(x, 0, keep_dims=True)
if diag:
cov = math_ops.reduce_sum(
math_ops.square(x), 0, keep_dims=True) / (num_points - 1)
else:
cov = math_ops.matmul(x, x, transpose_a=True) / (num_points - 1)
return cov
示例4: _define_full_covariance_probs
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _define_full_covariance_probs(self, shard_id, shard):
"""Defines the full covariance probabilties per example in a class.
Updates a matrix with dimension num_examples X num_classes.
Args:
shard_id: id of the current shard.
shard: current data shard, 1 X num_examples X dimensions.
"""
diff = shard - self._means
cholesky = linalg_ops.cholesky(self._covs + self._min_var)
log_det_covs = 2.0 * math_ops.reduce_sum(
math_ops.log(array_ops.matrix_diag_part(cholesky)), 1)
x_mu_cov = math_ops.square(
linalg_ops.matrix_triangular_solve(
cholesky, array_ops.transpose(
diff, perm=[0, 2, 1]), lower=True))
diag_m = array_ops.transpose(math_ops.reduce_sum(x_mu_cov, 1))
self._probs[shard_id] = -0.5 * (diag_m + math_ops.to_float(self._dimensions)
* math_ops.log(2 * np.pi) + log_det_covs)
示例5: var
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def var(x, axis=None, keepdims=False):
"""Variance of a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to compute the variance.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
Returns:
A tensor with the variance of elements of `x`.
"""
axis = _normalize_axis(axis, ndim(x))
if x.dtype.base_dtype == dtypes_module.bool:
x = math_ops.cast(x, floatx())
m = math_ops.reduce_mean(x, reduction_indices=axis, keep_dims=True)
devs_squared = math_ops.square(x - m)
return math_ops.reduce_mean(
devs_squared, reduction_indices=axis, keep_dims=keepdims)
示例6: _gini
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _gini(self, class_counts):
"""Calculate the Gini impurity.
If c(i) denotes the i-th class count and c = sum_i c(i) then
score = 1 - sum_i ( c(i) / c )^2
Args:
class_counts: A 2-D tensor of per-class counts, usually a slice or
gather from variables.node_sums.
Returns:
A 1-D tensor of the Gini impurities for each row in the input.
"""
smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1])
sums = math_ops.reduce_sum(smoothed, 1)
sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1)
return 1.0 - sum_squares / (sums * sums)
示例7: _weighted_gini
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _weighted_gini(self, class_counts):
"""Our split score is the Gini impurity times the number of examples.
If c(i) denotes the i-th class count and c = sum_i c(i) then
score = c * (1 - sum_i ( c(i) / c )^2 )
= c - sum_i c(i)^2 / c
Args:
class_counts: A 2-D tensor of per-class counts, usually a slice or
gather from variables.node_sums.
Returns:
A 1-D tensor of the Gini impurities for each row in the input.
"""
smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1])
sums = math_ops.reduce_sum(smoothed, 1)
sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1)
return sums - sum_squares / sums
示例8: _variance
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _variance(self):
var = (math_ops.square(self.rate)
/ math_ops.square(self.concentration - 1.)
/ (self.concentration - 2.))
if self.allow_nan_stats:
nan = array_ops.fill(
self.batch_shape_tensor(),
np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
name="nan")
return array_ops.where(self.concentration > 2., var, nan)
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
constant_op.constant(2., dtype=self.dtype),
self.concentration,
message="variance undefined when any concentration <= 2"),
], var)
示例9: _iqfov_via_sqrt_solve
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _iqfov_via_sqrt_solve(self, x):
"""Get the inverse quadratic form on vectors via a sqrt_solve."""
# x^{-1} A^{-1} x = || S^{-1}x ||^2,
# where S is a square root of A (A = SS^T).
# Steps:
# 1. Convert x to a matrix, flipping all extra dimensions in `x` to the
# final dimension of x_matrix.
x_matrix = flip_vector_to_matrix(
x, self.batch_shape(), self.get_batch_shape())
# 2. Get soln_matrix = S^{-1} x_matrix
soln_matrix = self.sqrt_solve(x_matrix)
# 3. Reshape back to a vector.
soln = flip_matrix_to_vector(
soln_matrix, extract_batch_shape(x, 1), x.get_shape()[:-1])
# 4. L2 (batch) vector norm squared.
result = math_ops.reduce_sum(
math_ops.square(soln), reduction_indices=[-1])
result.set_shape(x.get_shape()[:-1])
return result
示例10: sqrt_log_abs_det
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def sqrt_log_abs_det(self, name="sqrt_log_det"):
"""Log absolute value determinant of the sqrt `S` for every batch member.
In most cases, this will be the same as `sqrt_log_det`, but for certain
operators defined by a square root, this might be implemented slightly
differently.
Args:
name: A name scope to use for ops added by this method.
Returns:
Logarithm of absolute value determinant of the square root `S` for
every batch member.
"""
with ops.name_scope(self.name):
with ops.name_scope(name, values=self.inputs):
return self._dispatch_based_on_batch(
self._batch_sqrt_log_abs_det, self._sqrt_log_abs_det)
示例11: _variance
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _variance(self, sums, squares):
"""Calculate the variance for each row of the input tensors.
Variance is V = E[x^2] - (E[x])^2.
Args:
sums: A tensor containing output sums, usually a slice from
variables.node_sums. Should contain the number of examples seen
in index 0 so we can calculate expected value.
squares: Same as sums, but sums of squares.
Returns:
A 1-D tensor of the variances for each row in the input.
"""
total_count = array_ops.slice(sums, [0, 0], [-1, 1])
e_x = sums / total_count
e_x2 = squares / total_count
return math_ops.reduce_sum(e_x2 - math_ops.square(e_x), 1)
示例12: call
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def call(self, inputs):
inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
ndim = self._input_rank
shape = self.gamma.get_shape().as_list()
gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)
# Compute normalization pool.
if self.data_format == 'channels_first':
norm_pool = nn.convolution(
math_ops.square(inputs),
gamma,
'VALID',
data_format='NC' + 'DHW' [-(ndim - 2):])
if ndim == 3:
norm_pool = array_ops.expand_dims(norm_pool, 2)
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
norm_pool = array_ops.squeeze(norm_pool, [2])
elif ndim == 5:
shape = array_ops.shape(norm_pool)
norm_pool = array_ops.reshape(norm_pool, shape[:3] + [-1])
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
norm_pool = array_ops.reshape(norm_pool, shape)
else: # ndim == 4
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
else: # channels_last
norm_pool = nn.convolution(math_ops.square(inputs), gamma, 'VALID')
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NHWC')
norm_pool = math_ops.sqrt(norm_pool)
if self.inverse:
outputs = inputs * norm_pool
else:
outputs = inputs / norm_pool
outputs.set_shape(inputs.get_shape())
return outputs
示例13: unit_norm
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
"""Normalizes the given input across the specified dimension to unit length.
Note that the rank of `input` must be known.
Args:
inputs: A `Tensor` of arbitrary size.
dim: The dimension along which the input is normalized.
epsilon: A small value to add to the inputs to avoid dividing by zero.
scope: Optional scope for variable_scope.
Returns:
The normalized `Tensor`.
Raises:
ValueError: If dim is smaller than the number of dimensions in 'inputs'.
"""
with variable_scope.variable_scope(scope, 'UnitNorm', [inputs]):
if not inputs.get_shape():
raise ValueError('The input rank must be known.')
input_rank = len(inputs.get_shape().as_list())
if dim < 0 or dim >= input_rank:
raise ValueError('dim must be positive but smaller than the input rank.')
lengths = math_ops.sqrt(
epsilon + math_ops.reduce_sum(math_ops.square(inputs), dim, True))
multiples = []
if dim > 0:
multiples.append(array_ops.ones([dim], dtypes.int32))
multiples.append(
array_ops.strided_slice(array_ops.shape(inputs), [dim], [dim + 1]))
if dim < (input_rank - 1):
multiples.append(array_ops.ones([input_rank - 1 - dim], dtypes.int32))
multiples = array_ops.concat(multiples, 0)
return math_ops.div(inputs, array_ops.tile(lengths, multiples))
示例14: poincare_normalize
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def poincare_normalize(x, axis=1, epsilon=1e-5, name=None):
"""Project into the Poincare ball with norm <= 1.0 - epsilon.
https://en.wikipedia.org/wiki/Poincare_ball_model
Used in
Poincare Embeddings for Learning Hierarchical Representations
Maximilian Nickel, Douwe Kiela
https://arxiv.org/pdf/1705.08039.pdf
For a 1-D tensor with `axis = 0`, computes
(x * (1 - epsilon)) / ||x|| if ||x|| > 1 - epsilon
output =
x otherwise
For `x` with more dimensions, independently normalizes each 1-D slice along
dimension `axis`.
Args:
x: A `Tensor`.
axis: Axis along which to normalize. A scalar or a vector of integers.
epsilon: A small deviation from the edge of the unit sphere for numerical
stability.
name: A name for this operation (optional).
Returns:
A `Tensor` with the same shape as `x`.
"""
with ops.name_scope(name, 'poincare_normalize', [x]) as name:
x = ops.convert_to_tensor(x, name='x')
square_sum = math_ops.reduce_sum(math_ops.square(x), axis, keepdims=True)
x_inv_norm = math_ops.rsqrt(square_sum)
x_inv_norm = math_ops.minimum((1. - epsilon) * x_inv_norm, 1.)
return math_ops.multiply(x, x_inv_norm, name=name)
示例15: _adaptive_max_norm
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
"""Find max_norm given norm and previous average."""
with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
log_norm = math_ops.log(norm + epsilon)
def moving_average(name, value, decay):
moving_average_variable = vs.get_variable(
name,
shape=value.get_shape(),
dtype=value.dtype,
initializer=init_ops.zeros_initializer(),
trainable=False)
return moving_averages.assign_moving_average(
moving_average_variable, value, decay, zero_debias=False)
# quicker adaptation at the beginning
if global_step is not None:
n = math_ops.cast(global_step, dtypes.float32)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
variance = sq_mean - math_ops.square(mean)
std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
max_norms = math_ops.exp(mean + std_factor * std)
return max_norms, mean