當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.square方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.square方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.square方法的具體用法?Python math_ops.square怎麽用?Python math_ops.square使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.square方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _kl_normal_normal

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _kl_normal_normal(n_a, n_b, name=None):
  """Calculate the batched KL divergence KL(n_a || n_b) with n_a and n_b Normal.

  Args:
    n_a: instance of a Normal distribution object.
    n_b: instance of a Normal distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_normal_normal".

  Returns:
    Batchwise KL(n_a || n_b)
  """
  with ops.name_scope(name, "kl_normal_normal", [n_a.loc, n_b.loc]):
    one = constant_op.constant(1, dtype=n_a.dtype)
    two = constant_op.constant(2, dtype=n_a.dtype)
    half = constant_op.constant(0.5, dtype=n_a.dtype)
    s_a_squared = math_ops.square(n_a.scale)
    s_b_squared = math_ops.square(n_b.scale)
    ratio = s_a_squared / s_b_squared
    return (math_ops.square(n_a.loc - n_b.loc) / (two * s_b_squared) +
            half * (ratio - one - math_ops.log(ratio))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:normal.py

示例2: _compute_euclidean_distance

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _compute_euclidean_distance(cls, inputs, clusters):
    """Computes Euclidean distance between each input and each cluster center.

    Args:
      inputs: list of input Tensors.
      clusters: cluster Tensor.

    Returns:
      list of Tensors, where each element corresponds to each element in inputs.
      The value is the distance of each row to all the cluster centers.
    """
    output = []
    for inp in inputs:
      with ops.colocate_with(inp):
        # Computes Euclidean distance. Note the first and third terms are
        # broadcast additions.
        squared_distance = (math_ops.reduce_sum(
            math_ops.square(inp), 1, keep_dims=True) - 2 * math_ops.matmul(
                inp, clusters, transpose_b=True) + array_ops.transpose(
                    math_ops.reduce_sum(
                        math_ops.square(clusters), 1, keep_dims=True)))
        output.append(squared_distance)

    return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:clustering_ops.py

示例3: _covariance

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _covariance(x, diag):
  """Defines the covariance operation of a matrix.

  Args:
    x: a matrix Tensor. Dimension 0 should contain the number of examples.
    diag: if True, it computes the diagonal covariance.

  Returns:
    A Tensor representing the covariance of x. In the case of
  diagonal matrix just the diagonal is returned.
  """
  num_points = math_ops.to_float(array_ops.shape(x)[0])
  x -= math_ops.reduce_mean(x, 0, keep_dims=True)
  if diag:
    cov = math_ops.reduce_sum(
        math_ops.square(x), 0, keep_dims=True) / (num_points - 1)
  else:
    cov = math_ops.matmul(x, x, transpose_a=True) / (num_points - 1)
  return cov 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:gmm_ops.py

示例4: _define_full_covariance_probs

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _define_full_covariance_probs(self, shard_id, shard):
    """Defines the full covariance probabilties per example in a class.

    Updates a matrix with dimension num_examples X num_classes.

    Args:
      shard_id: id of the current shard.
      shard: current data shard, 1 X num_examples X dimensions.
    """
    diff = shard - self._means
    cholesky = linalg_ops.cholesky(self._covs + self._min_var)
    log_det_covs = 2.0 * math_ops.reduce_sum(
        math_ops.log(array_ops.matrix_diag_part(cholesky)), 1)
    x_mu_cov = math_ops.square(
        linalg_ops.matrix_triangular_solve(
            cholesky, array_ops.transpose(
                diff, perm=[0, 2, 1]), lower=True))
    diag_m = array_ops.transpose(math_ops.reduce_sum(x_mu_cov, 1))
    self._probs[shard_id] = -0.5 * (diag_m + math_ops.to_float(self._dimensions)
                                    * math_ops.log(2 * np.pi) + log_det_covs) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:gmm_ops.py

示例5: var

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def var(x, axis=None, keepdims=False):
  """Variance of a tensor, alongside the specified axis.

  Arguments:
      x: A tensor or variable.
      axis: An integer, the axis to compute the variance.
      keepdims: A boolean, whether to keep the dimensions or not.
          If `keepdims` is `False`, the rank of the tensor is reduced
          by 1. If `keepdims` is `True`,
          the reduced dimension is retained with length 1.

  Returns:
      A tensor with the variance of elements of `x`.
  """
  axis = _normalize_axis(axis, ndim(x))
  if x.dtype.base_dtype == dtypes_module.bool:
    x = math_ops.cast(x, floatx())
  m = math_ops.reduce_mean(x, reduction_indices=axis, keep_dims=True)
  devs_squared = math_ops.square(x - m)
  return math_ops.reduce_mean(
      devs_squared, reduction_indices=axis, keep_dims=keepdims) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:backend.py

示例6: _gini

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _gini(self, class_counts):
    """Calculate the Gini impurity.

    If c(i) denotes the i-th class count and c = sum_i c(i) then
      score = 1 - sum_i ( c(i) / c )^2

    Args:
      class_counts: A 2-D tensor of per-class counts, usually a slice or
        gather from variables.node_sums.

    Returns:
      A 1-D tensor of the Gini impurities for each row in the input.
    """
    smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1])
    sums = math_ops.reduce_sum(smoothed, 1)
    sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1)

    return 1.0 - sum_squares / (sums * sums) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:tensor_forest.py

示例7: _weighted_gini

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _weighted_gini(self, class_counts):
    """Our split score is the Gini impurity times the number of examples.

    If c(i) denotes the i-th class count and c = sum_i c(i) then
      score = c * (1 - sum_i ( c(i) / c )^2 )
            = c - sum_i c(i)^2 / c
    Args:
      class_counts: A 2-D tensor of per-class counts, usually a slice or
        gather from variables.node_sums.

    Returns:
      A 1-D tensor of the Gini impurities for each row in the input.
    """
    smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1])
    sums = math_ops.reduce_sum(smoothed, 1)
    sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1)

    return sums - sum_squares / sums 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:tensor_forest.py

示例8: _variance

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _variance(self):
    var = (math_ops.square(self.rate)
           / math_ops.square(self.concentration - 1.)
           / (self.concentration - 2.))
    if self.allow_nan_stats:
      nan = array_ops.fill(
          self.batch_shape_tensor(),
          np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
          name="nan")
      return array_ops.where(self.concentration > 2., var, nan)
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              constant_op.constant(2., dtype=self.dtype),
              self.concentration,
              message="variance undefined when any concentration <= 2"),
      ], var) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:inverse_gamma.py

示例9: _iqfov_via_sqrt_solve

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _iqfov_via_sqrt_solve(self, x):
    """Get the inverse quadratic form on vectors via a sqrt_solve."""
    # x^{-1} A^{-1} x = || S^{-1}x ||^2,
    # where S is a square root of A (A = SS^T).
    # Steps:
    # 1. Convert x to a matrix, flipping all extra dimensions in `x` to the
    #    final dimension of x_matrix.
    x_matrix = flip_vector_to_matrix(
        x, self.batch_shape(), self.get_batch_shape())
    # 2. Get soln_matrix = S^{-1} x_matrix
    soln_matrix = self.sqrt_solve(x_matrix)
    # 3. Reshape back to a vector.
    soln = flip_matrix_to_vector(
        soln_matrix, extract_batch_shape(x, 1), x.get_shape()[:-1])
    # 4. L2 (batch) vector norm squared.
    result = math_ops.reduce_sum(
        math_ops.square(soln), reduction_indices=[-1])
    result.set_shape(x.get_shape()[:-1])
    return result 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:operator_pd.py

示例10: sqrt_log_abs_det

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def sqrt_log_abs_det(self, name="sqrt_log_det"):
    """Log absolute value determinant of the sqrt `S` for every batch member.

    In most cases, this will be the same as `sqrt_log_det`, but for certain
    operators defined by a square root, this might be implemented slightly
    differently.

    Args:
      name:  A name scope to use for ops added by this method.

    Returns:
      Logarithm of absolute value determinant of the square root `S` for
      every batch member.
    """
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=self.inputs):
        return self._dispatch_based_on_batch(
            self._batch_sqrt_log_abs_det, self._sqrt_log_abs_det) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:operator_pd.py

示例11: _variance

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _variance(self, sums, squares):
    """Calculate the variance for each row of the input tensors.

    Variance is V = E[x^2] - (E[x])^2.

    Args:
      sums: A tensor containing output sums, usually a slice from
        variables.node_sums.  Should contain the number of examples seen
        in index 0 so we can calculate expected value.
      squares: Same as sums, but sums of squares.

    Returns:
      A 1-D tensor of the variances for each row in the input.
    """
    total_count = array_ops.slice(sums, [0, 0], [-1, 1])
    e_x = sums / total_count
    e_x2 = squares / total_count

    return math_ops.reduce_sum(e_x2 - math_ops.square(e_x), 1) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:21,代碼來源:tensor_forest.py

示例12: call

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def call(self, inputs):
    inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
    ndim = self._input_rank

    shape = self.gamma.get_shape().as_list()
    gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)

    # Compute normalization pool.
    if self.data_format == 'channels_first':
      norm_pool = nn.convolution(
          math_ops.square(inputs),
          gamma,
          'VALID',
          data_format='NC' + 'DHW' [-(ndim - 2):])
      if ndim == 3:
        norm_pool = array_ops.expand_dims(norm_pool, 2)
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
        norm_pool = array_ops.squeeze(norm_pool, [2])
      elif ndim == 5:
        shape = array_ops.shape(norm_pool)
        norm_pool = array_ops.reshape(norm_pool, shape[:3] + [-1])
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
        norm_pool = array_ops.reshape(norm_pool, shape)
      else:  # ndim == 4
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
    else:  # channels_last
      norm_pool = nn.convolution(math_ops.square(inputs), gamma, 'VALID')
      norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NHWC')
    norm_pool = math_ops.sqrt(norm_pool)

    if self.inverse:
      outputs = inputs * norm_pool
    else:
      outputs = inputs / norm_pool
    outputs.set_shape(inputs.get_shape())
    return outputs 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:38,代碼來源:layers.py

示例13: unit_norm

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
  """Normalizes the given input across the specified dimension to unit length.

  Note that the rank of `input` must be known.

  Args:
    inputs: A `Tensor` of arbitrary size.
    dim: The dimension along which the input is normalized.
    epsilon: A small value to add to the inputs to avoid dividing by zero.
    scope: Optional scope for variable_scope.

  Returns:
    The normalized `Tensor`.

  Raises:
    ValueError: If dim is smaller than the number of dimensions in 'inputs'.
  """
  with variable_scope.variable_scope(scope, 'UnitNorm', [inputs]):
    if not inputs.get_shape():
      raise ValueError('The input rank must be known.')
    input_rank = len(inputs.get_shape().as_list())
    if dim < 0 or dim >= input_rank:
      raise ValueError('dim must be positive but smaller than the input rank.')

    lengths = math_ops.sqrt(
        epsilon + math_ops.reduce_sum(math_ops.square(inputs), dim, True))
    multiples = []
    if dim > 0:
      multiples.append(array_ops.ones([dim], dtypes.int32))
    multiples.append(
        array_ops.strided_slice(array_ops.shape(inputs), [dim], [dim + 1]))
    if dim < (input_rank - 1):
      multiples.append(array_ops.ones([input_rank - 1 - dim], dtypes.int32))
    multiples = array_ops.concat(multiples, 0)
    return math_ops.div(inputs, array_ops.tile(lengths, multiples)) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:37,代碼來源:layers.py

示例14: poincare_normalize

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def poincare_normalize(x, axis=1, epsilon=1e-5, name=None):
  """Project into the Poincare ball with norm <= 1.0 - epsilon.

  https://en.wikipedia.org/wiki/Poincare_ball_model

  Used in
  Poincare Embeddings for Learning Hierarchical Representations
  Maximilian Nickel, Douwe Kiela
  https://arxiv.org/pdf/1705.08039.pdf

  For a 1-D tensor with `axis = 0`, computes

                (x * (1 - epsilon)) / ||x||     if ||x|| > 1 - epsilon
      output =
                 x                              otherwise

  For `x` with more dimensions, independently normalizes each 1-D slice along
  dimension `axis`.

  Args:
    x: A `Tensor`.
    axis: Axis along which to normalize.  A scalar or a vector of integers.
    epsilon: A small deviation from the edge of the unit sphere for numerical
      stability.
    name: A name for this operation (optional).

  Returns:
    A `Tensor` with the same shape as `x`.
  """
  with ops.name_scope(name, 'poincare_normalize', [x]) as name:
    x = ops.convert_to_tensor(x, name='x')
    square_sum = math_ops.reduce_sum(math_ops.square(x), axis, keepdims=True)
    x_inv_norm = math_ops.rsqrt(square_sum)
    x_inv_norm = math_ops.minimum((1. - epsilon) * x_inv_norm, 1.)
    return math_ops.multiply(x, x_inv_norm, name=name) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:37,代碼來源:layers.py

示例15: _adaptive_max_norm

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import square [as 別名]
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
  """Find max_norm given norm and previous average."""
  with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
    log_norm = math_ops.log(norm + epsilon)

    def moving_average(name, value, decay):
      moving_average_variable = vs.get_variable(
          name,
          shape=value.get_shape(),
          dtype=value.dtype,
          initializer=init_ops.zeros_initializer(),
          trainable=False)
      return moving_averages.assign_moving_average(
          moving_average_variable, value, decay, zero_debias=False)

    # quicker adaptation at the beginning
    if global_step is not None:
      n = math_ops.cast(global_step, dtypes.float32)
      decay = math_ops.minimum(decay, n / (n + 1.))

    # update averages
    mean = moving_average("mean", log_norm, decay)
    sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)

    variance = sq_mean - math_ops.square(mean)
    std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
    max_norms = math_ops.exp(mean + std_factor * std)
    return max_norms, mean 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:30,代碼來源:optimizers.py


注:本文中的tensorflow.python.ops.math_ops.square方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。