當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.sign方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.sign方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.sign方法的具體用法?Python math_ops.sign怎麽用?Python math_ops.sign使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.sign方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def _sample_n(self, n, seed=None):
    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
    # Uniform variates must be sampled from the open-interval `(-1, 1)` rather
    # than `[-1, 1)`. In the case of `(0, 1)` we'd use
    # `np.finfo(self.dtype.as_numpy_dtype).tiny` because it is the smallest,
    # positive, "normal" number. However, the concept of subnormality exists
    # only at zero; here we need the smallest usable number larger than -1,
    # i.e., `-1 + eps/2`.
    uniform_samples = random_ops.random_uniform(
        shape=shape,
        minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                            self.dtype.as_numpy_dtype(0.)),
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    return (self.loc - self.scale * math_ops.sign(uniform_samples) *
            math_ops.log1p(-math_ops.abs(uniform_samples))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:laplace.py

示例2: _apply_weight_decays

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def _apply_weight_decays(self, var, var_t):
    l1, l2 = self.weight_decays[var.name]
    if l1 == 0 and l2 == 0:
        if self.init_verbose and not self._init_notified:
            print("Both penalties are 0 for %s, will skip" % var.name)
        return var_t

    norm = math_ops.cast(math_ops.sqrt(self.batch_size / self.total_iterations_wd),
                         'float32')
    l1_normalized = l1 * norm
    l2_normalized = l2 * norm

    if l1 != 0 and l2 != 0:
        decay = l1_normalized * math_ops.sign(var) + l2_normalized * var
    elif l1 != 0:
        decay = l1_normalized * math_ops.sign(var)
    else:
        decay = l2_normalized * var
    var_t = var_t - self.eta_t * decay

    if self.init_verbose and not self._init_notified:
        norm_print = (self.batch_size / self.total_iterations_wd) ** (1 / 2)
        l1n_print, l2n_print = l1 * norm_print, l2 * norm_print
        decays_str = "{}(L1), {}(L2)".format(l1n_print, l2n_print)
        print('{} weight decay set for {}'.format(decays_str, var.name))
    return var_t 
開發者ID:OverLordGoldDragon,項目名稱:keras-adamw,代碼行數:28,代碼來源:utils.py

示例3: _cdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def _cdf(self, x):
    z = self._z(x)
    return (0.5 + 0.5 * math_ops.sign(z) *
            (1. - math_ops.exp(-math_ops.abs(z)))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:6,代碼來源:laplace.py

示例4: _AbsGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def _AbsGrad(op, grad):
  x = op.inputs[0]
  return grad * math_ops.sign(x) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:math_grad.py

示例5: _ComplexAbsGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def _ComplexAbsGrad(op, grad):
  """Returns the gradient of ComplexAbs."""
  # TODO(b/27786104): The cast to complex could be removed once arithmetic
  # supports mixtures of complex64 and real values.
  return (math_ops.complex(grad, array_ops.zeros_like(grad)) *
          math_ops.sign(op.inputs[0])) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:math_grad.py

示例6: sign

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def sign(x):
  """Element-wise sign.

  Arguments:
      x: Tensor or variable.

  Returns:
      A tensor.
  """
  return math_ops.sign(x) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:backend.py

示例7: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def _sample_n(self, n, seed=None):
    shape = array_ops.concat(([n], self.batch_shape()), 0)
    # Sample uniformly-at-random from the open-interval (-1, 1).
    uniform_samples = random_ops.random_uniform(
        shape=shape,
        minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                            self.dtype.as_numpy_dtype(0.)),
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    return (self.loc - self.scale * math_ops.sign(uniform_samples) *
            math_ops.log(1. - math_ops.abs(uniform_samples))) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:14,代碼來源:laplace.py

示例8: _cdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def _cdf(self, x):
    y = x - self.loc
    return (0.5 + 0.5 * math_ops.sign(y) *
            (1. - math_ops.exp(-math_ops.abs(y) / self.scale))) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:6,代碼來源:laplace.py

示例9: setUp

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def setUp(self):
    super(CoreUnaryOpsTest, self).setUp()

    self.ops = [
        ('abs', operator.abs, math_ops.abs, core.abs_function),
        ('neg', operator.neg, math_ops.negative, core.neg),
        # TODO(shoyer): add unary + to core TensorFlow
        ('pos', None, None, None),
        ('sign', None, math_ops.sign, core.sign),
        ('reciprocal', None, math_ops.reciprocal, core.reciprocal),
        ('square', None, math_ops.square, core.square),
        ('round', None, math_ops.round, core.round_function),
        ('sqrt', None, math_ops.sqrt, core.sqrt),
        ('rsqrt', None, math_ops.rsqrt, core.rsqrt),
        ('log', None, math_ops.log, core.log),
        ('exp', None, math_ops.exp, core.exp),
        ('log', None, math_ops.log, core.log),
        ('ceil', None, math_ops.ceil, core.ceil),
        ('floor', None, math_ops.floor, core.floor),
        ('cos', None, math_ops.cos, core.cos),
        ('sin', None, math_ops.sin, core.sin),
        ('tan', None, math_ops.tan, core.tan),
        ('acos', None, math_ops.acos, core.acos),
        ('asin', None, math_ops.asin, core.asin),
        ('atan', None, math_ops.atan, core.atan),
        ('lgamma', None, math_ops.lgamma, core.lgamma),
        ('digamma', None, math_ops.digamma, core.digamma),
        ('erf', None, math_ops.erf, core.erf),
        ('erfc', None, math_ops.erfc, core.erfc),
        ('lgamma', None, math_ops.lgamma, core.lgamma),
    ]
    total_size = np.prod([v.size for v in self.original_lt.axes.values()])
    self.test_lt = core.LabeledTensor(
        math_ops.cast(self.original_lt, dtypes.float32) / total_size,
        self.original_lt.axes) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:37,代碼來源:core_test.py

示例10: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def _sample_n(self, n, seed=None):
    shape = array_ops.concat(0, ([n], self.batch_shape()))
    # Sample uniformly-at-random from the open-interval (-1, 1).
    uniform_samples = random_ops.random_uniform(
        shape=shape,
        minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                            self.dtype.as_numpy_dtype(0.)),
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    return (self.loc - self.scale * math_ops.sign(uniform_samples) *
            math_ops.log(1. - math_ops.abs(uniform_samples))) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:laplace.py

示例11: modrelu

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def modrelu(z, b, comp):
    if comp:
        z_norm = math_ops.sqrt(math_ops.square(math_ops.real(z)) + math_ops.square(math_ops.imag(z))) + 0.00001
        step1 = nn_ops.bias_add(z_norm, b)
        step2 = math_ops.complex(nn_ops.relu(step1), array_ops.zeros_like(z_norm))
        step3 = z/math_ops.complex(z_norm, array_ops.zeros_like(z_norm))
    else:
        z_norm = math_ops.abs(z) + 0.00001
        step1 = nn_ops.bias_add(z_norm, b)
        step2 = nn_ops.relu(step1)
        step3 = math_ops.sign(z)
       
    return math_ops.multiply(step3, step2) 
開發者ID:rdangovs,項目名稱:rotational-unit-of-memory,代碼行數:15,代碼來源:modrelu.py

示例12: modrelu

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def modrelu(z, b, comp):
    if comp:
        z_norm = math_ops.sqrt(math_ops.square(math_ops.real(z)) + math_ops.square(math_ops.imag(z))) + 0.00001
        step1 = nn_ops.bias_add(z_norm, b)
        step2 = math_ops.complex(nn_ops.relu(step1), array_ops.zeros_like(z_norm))
        step3 = z/math_ops.complex(z_norm, array_ops.zeros_like(z_norm))
    else:
        z_norm = math_ops.abs(z) + 0.00001
        step1 = nn_ops.bias_add(z_norm, b)
        step2 = nn_ops.relu(step1)
        step3 = math_ops.sign(z)
    return math_ops.multiply(step3, step2) 
開發者ID:IsaacChanghau,項目名稱:AmusingPythonCodes,代碼行數:14,代碼來源:modrelu.py

示例13: get_grow_tensor

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def get_grow_tensor(self, weight, method):
    if method.startswith('grad_scale'):
      masked_grad = self._weight2masked_grads[weight.name]
      divisor = extract_number(method)
      grow_tensor = masked_grad / divisor
    elif method.startswith('grad_sign'):
      masked_grad_sign = math_ops.sign(self._weight2masked_grads[weight.name])
      divisor = extract_number(method)
      grow_tensor = masked_grad_sign / divisor
    else:
      grow_tensor = super(
          SparseRigLOptimizer, self).get_grow_tensor(weight, method)
    return grow_tensor 
開發者ID:google-research,項目名稱:rigl,代碼行數:15,代碼來源:sparse_optimizers.py

示例14: _apply_dense

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def _apply_dense(self, grad, var):
    lr_scale = self.get_slot(var, "lr_scale")
    momentum = self.get_slot(var, "momentum")
    gbar = self.get_slot(var, "gbar")
    gain = self.get_slot(var, "gain")
    counter = self.get_slot(var, "counter")
    counter_updated = state_ops.assign(counter, counter + 1)

    # lr_scale update uses normalized grad and momentum to be independent of dim
    normalized_grad = grad / (linalg_ops.norm(grad) + 1e-10)
    normalized_momentum = momentum / (linalg_ops.norm(momentum) + 1e-10)
    # Apply EG updates on lr_scale:
    # grad_lr_scale = -inner_product(current_grad, old_momentum)
    # lr_scale <- lr_scale * exp(-scale_learning_rate * grad_lr_scale)
    lr_scale_unnormalized_updated = clip_ops.clip_by_value(
        lr_scale * math_ops.exp(
            self._scale_learning_rate * math_ops.reduce_sum(grad * momentum)),
        self._min_scale, self._max_scale)
    lr_scale_normalized_updated = clip_ops.clip_by_value(
        lr_scale * math_ops.exp(self._scale_learning_rate * math_ops.reduce_sum(
            normalized_grad * normalized_momentum)), self._min_scale,
        self._max_scale)
    lr_scale_updated = state_ops.assign(
        lr_scale,
        array_ops.where(self._use_directions, lr_scale_normalized_updated,
                        lr_scale_unnormalized_updated))
    # remove the bias of zero initialization in gbar
    corrected_gbar = gbar / (
        1.0 - self._beta**math_ops.maximum(counter_updated - 1, 1))
    # Apply EG updates on gain:
    # grad_gain = - current_grad * old_gbar
    # gain <- gain * exp(-gain_learning_rate * grad_gain)
    gain_unnormalized_updated = clip_ops.clip_by_value(
        gain * math_ops.exp(self._gain_learning_rate * grad * corrected_gbar),
        self._min_gain, self._max_gain)
    # Normalized update uses sign(grad) * sign(gbar) as a proxy for grad_gain.
    gain_normalized_updated = clip_ops.clip_by_value(
        gain * math_ops.exp(self._gain_learning_rate * math_ops.sign(grad) *
                            math_ops.sign(gbar)), self._min_gain,
        self._max_gain)
    gain_updated = state_ops.assign(
        gain,
        array_ops.where(self._use_signs, gain_normalized_updated,
                        gain_unnormalized_updated))
    scaled_g = self._learning_rate_tensor * gain_updated * grad
    with ops.control_dependencies([lr_scale_updated, scaled_g]):
      momentum_updated = state_ops.assign(
          momentum, self._momentum_tensor * momentum + scaled_g)
      gbar_updated = state_ops.assign(
          gbar, self._beta * gbar + (1.0 - self._beta) * grad)
    with ops.control_dependencies([gbar_updated]):
      return state_ops.assign_sub(var, lr_scale_updated * momentum_updated) 
開發者ID:tensorflow,項目名稱:lingvo,代碼行數:54,代碼來源:egdd.py

示例15: build

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import sign [as 別名]
def build(self, inputs_shape):
    if inputs_shape[1].value is None:
      raise ValueError("Expected inputs.shape[-1] to be known, saw shape: %s"
                       % inputs_shape)

    input_depth = inputs_shape[1].value
    if self._input_initializer is None:
      self._input_initializer = init_ops.random_normal_initializer(mean=0.0,
                                                                   stddev=0.001)
    self._input_kernel = self.add_variable(
        "input_kernel",
        shape=[input_depth, self._num_units],
        initializer=self._input_initializer)

    if self._recurrent_initializer is None:
      self._recurrent_initializer = init_ops.constant_initializer(1.)
    self._recurrent_kernel = self.add_variable(
        "recurrent_kernel",
        shape=[self._num_units],
        initializer=self._recurrent_initializer)

    # Clip the absolute values of the recurrent weights to the specified minimum
    if self._recurrent_min_abs:
      abs_kernel = math_ops.abs(self._recurrent_kernel)
      min_abs_kernel = math_ops.maximum(abs_kernel, self._recurrent_min_abs)
      self._recurrent_kernel = math_ops.multiply(
          math_ops.sign(self._recurrent_kernel),
          min_abs_kernel
      )

    # Clip the absolute values of the recurrent weights to the specified maximum
    if self._recurrent_max_abs:
      self._recurrent_kernel = clip_ops.clip_by_value(self._recurrent_kernel,
                                                      -self._recurrent_max_abs,
                                                      self._recurrent_max_abs)

    self._bias = self.add_variable(
        "bias",
        shape=[self._num_units],
        initializer=init_ops.zeros_initializer(dtype=self.dtype))

    self.built = True 
開發者ID:batzner,項目名稱:indrnn,代碼行數:44,代碼來源:ind_rnn_cell.py


注:本文中的tensorflow.python.ops.math_ops.sign方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。