當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.rsqrt方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.rsqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.rsqrt方法的具體用法?Python math_ops.rsqrt怎麽用?Python math_ops.rsqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.rsqrt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def _sample_n(self, n, seed=None):
    # The sampling method comes from the fact that if:
    #   X ~ Normal(0, 1)
    #   Z ~ Chi2(df)
    #   Y = X / sqrt(Z / df)
    # then:
    #   Y ~ StudentT(df).
    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
    normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
    df = self.df * array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)
    gamma_sample = random_ops.random_gamma(
        [n],
        0.5 * df,
        beta=0.5,
        dtype=self.dtype,
        seed=distribution_util.gen_new_seed(seed, salt="student_t"))
    samples = normal_sample * math_ops.rsqrt(gamma_sample / df)
    return samples * self.scale + self.loc  # Abs(scale) not wanted. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:student_t.py

示例2: LRSchedule

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def LRSchedule(global_step, d_model, warmup_steps=4000):
	if global_step is None:
		raise ValueError("global_step is required for learning_rate_schedule.")

	def deal_lr(global_step, d_model, warmup_steps):
		d_model = ops.convert_to_tensor(d_model, dtype=tf.float32)
		dtype = d_model.dtype
		warmup_steps = math_ops.cast(warmup_steps, dtype)

		global_step_recomp = math_ops.cast(global_step, dtype)
		arg1 = math_ops.rsqrt(global_step_recomp)
		arg2 = math_ops.multiply(global_step_recomp, math_ops.pow(warmup_steps, -1.5))

		return math_ops.multiply(math_ops.rsqrt(d_model), math_ops.minimum(arg1, arg2))

	return functools.partial(deal_lr, global_step, d_model, warmup_steps) 
開發者ID:EternalFeather,項目名稱:Transformer-in-generating-dialogue,代碼行數:18,代碼來源:utils.py

示例3: _BatchNormWithGlobalNormalizationGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def _BatchNormWithGlobalNormalizationGrad(op, grad):
  """Return the gradients for the 5 inputs of BatchNormWithGlobalNormalization.

  We do not backprop anything for the mean and var intentionally as they are
  not being trained with backprop in the operation.

  Args:
    op: The BatchNormOp for which we need to generate gradients.
    grad: Tensor.  The gradients passed to the BatchNormOp.

  Returns:
    dx: Backprop for input, which is (grad * (g * rsqrt(v + epsilon)))
    dm: Backprop for mean, which is
        sum_over_rest(grad * g) * (-1 / rsqrt(v + epsilon))
    dv: Backprop for variance, which is
        sum_over_rest(grad * g * (x - m)) * (-1/2) * (v + epsilon) ^ (-3/2)
    db: Backprop for beta, which is grad reduced in all except the
        last dimension.
    dg: Backprop for gamma, which is (grad * ((x - m) * rsqrt(v + epsilon)))
  """
  dx, dm, dv, db, dg = gen_nn_ops._batch_norm_with_global_normalization_grad(
      op.inputs[0], op.inputs[1], op.inputs[2], op.inputs[4], grad,
      op.get_attr("variance_epsilon"), op.get_attr("scale_after_normalization"))
  return dx, dm, dv, db, dg 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:26,代碼來源:nn_grad.py

示例4: poincare_normalize

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def poincare_normalize(x, axis=1, epsilon=1e-5, name=None):
  """Project into the Poincare ball with norm <= 1.0 - epsilon.

  https://en.wikipedia.org/wiki/Poincare_ball_model

  Used in
  Poincare Embeddings for Learning Hierarchical Representations
  Maximilian Nickel, Douwe Kiela
  https://arxiv.org/pdf/1705.08039.pdf

  For a 1-D tensor with `axis = 0`, computes

                (x * (1 - epsilon)) / ||x||     if ||x|| > 1 - epsilon
      output =
                 x                              otherwise

  For `x` with more dimensions, independently normalizes each 1-D slice along
  dimension `axis`.

  Args:
    x: A `Tensor`.
    axis: Axis along which to normalize.  A scalar or a vector of integers.
    epsilon: A small deviation from the edge of the unit sphere for numerical
      stability.
    name: A name for this operation (optional).

  Returns:
    A `Tensor` with the same shape as `x`.
  """
  with ops.name_scope(name, 'poincare_normalize', [x]) as name:
    x = ops.convert_to_tensor(x, name='x')
    square_sum = math_ops.reduce_sum(math_ops.square(x), axis, keepdims=True)
    x_inv_norm = math_ops.rsqrt(square_sum)
    x_inv_norm = math_ops.minimum((1. - epsilon) * x_inv_norm, 1.)
    return math_ops.multiply(x, x_inv_norm, name=name) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:37,代碼來源:layers.py

示例5: _apply_dense

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def _apply_dense(self, grad, var):
    # Calculates the preconditioner statistics for each tensor.
    partitioned_grads = TensorPartitioner.partition_tensor(
        grad, self._partition_info)
    shape = var.get_shape()
    fallback_to_diagonal = self._fallback_to_diagonal_for_shape(shape)

    precond_statistics_update = []
    if not fallback_to_diagonal:
      precond_statistics_update = self._updated_statistics(
          var, partitioned_grads)

    accumulator = self.get_slot(var, "accumulator")
    accumulator_updated = state_ops.assign_add(accumulator, grad * grad)
    accumulator_inv_sqrt = math_ops.rsqrt(accumulator_updated + 1e-30)
    if self._momentum > 0.0:
      scaled_g = (1.0 - self._momentum_tensor) * (grad * accumulator_inv_sqrt)
      gbar = self.get_slot(var, "momentum")
      gbar_updated = state_ops.assign_add(
          gbar,
          gbar * (self._momentum_tensor - 1.0) + scaled_g)
    else:
      gbar_updated = (grad * accumulator_inv_sqrt)

    if not fallback_to_diagonal:
      # Update the preconditioner statistics followed by computing the
      # preconditioned gradient.
      with ops.control_dependencies(precond_statistics_update):
        s = tf.cast(self._run_nondiagonal_update, tf.float32)
        preconditioned_grad = self._preconditioned_update(
            var, partitioned_grads, gbar_updated)
        # slowly adapt from diagonal to preconditioned gradient.
        w = self._run_nondiagonal_update_warmup
        warmup_update = s * self._learning_rate_tensor * (
            w * preconditioned_grad + (1.0 - w) * gbar_updated)
        fallback_update = (1 - s) * (self._learning_rate_tensor * gbar_updated)
        return state_ops.assign_sub(var, warmup_update + fallback_update)
    else:
      return state_ops.assign_sub(var,
                                  self._learning_rate_tensor * gbar_updated) 
開發者ID:tensorflow,項目名稱:lingvo,代碼行數:42,代碼來源:distributed_shampoo.py

示例6: clip_by_average_norm

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def clip_by_average_norm(t, clip_norm, name=None):
  """Clips tensor values to a maximum average L2-norm.

  Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
  normalizes `t` so that its average L2-norm is less than or equal to
  `clip_norm`. Specifically, if the average L2-norm is already less than or
  equal to `clip_norm`, then `t` is not modified. If the average L2-norm is
  greater than `clip_norm`, then this operation returns a tensor of the same
  type and shape as `t` with its values set to:

  `t * clip_norm / l2norm_avg(t)`

  In this case, the average L2-norm of the output tensor is `clip_norm`.

  This operation is typically used to clip gradients before applying them with
  an optimizer.

  Args:
    t: A `Tensor`.
    clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
    name: A name for the operation (optional).

  Returns:
    A clipped `Tensor`.
  """
  with ops.name_scope(name, "clip_by_average_norm", [t, clip_norm]) as name:
    t = ops.convert_to_tensor(t, name="t")

    # Calculate L2-norm per element, clip elements by ratio of clip_norm to
    # L2-norm per element
    n_element = math_ops.cast(array_ops.size(t), dtypes.float32)
    l2norm_inv = math_ops.rsqrt(
        math_ops.reduce_sum(t * t, math_ops.range(array_ops.rank(t))))
    tclip = array_ops.identity(
        t * clip_norm * math_ops.minimum(
            l2norm_inv * n_element, constant_op.constant(1.0) / clip_norm),
        name=name)

  return tclip 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:41,代碼來源:clip_ops.py

示例7: per_image_standardization

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def per_image_standardization(image):
  """Linearly scales `image` to have zero mean and unit norm.

  This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
  of all values in image, and
  `adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.

  `stddev` is the standard deviation of all values in `image`. It is capped
  away from zero to protect against division by 0 when handling uniform images.

  Args:
    image: 3-D tensor of shape `[height, width, channels]`.

  Returns:
    The standardized image with same shape as `image`.

  Raises:
    ValueError: if the shape of 'image' is incompatible with this function.
  """
  image = ops.convert_to_tensor(image, name='image')
  image = control_flow_ops.with_dependencies(
      _Check3DImage(image, require_static=False), image)
  num_pixels = math_ops.reduce_prod(array_ops.shape(image))

  image = math_ops.cast(image, dtype=dtypes.float32)
  image_mean = math_ops.reduce_mean(image)

  variance = (math_ops.reduce_mean(math_ops.square(image)) -
              math_ops.square(image_mean))
  variance = gen_nn_ops.relu(variance)
  stddev = math_ops.sqrt(variance)

  # Apply a minimum normalization that protects us against uniform images.
  min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
  pixel_value_scale = math_ops.maximum(stddev, min_stddev)
  pixel_value_offset = image_mean

  image = math_ops.subtract(image, pixel_value_offset)
  image = math_ops.div(image, pixel_value_scale)
  return image 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:42,代碼來源:image_ops_impl.py

示例8: _variance_scale_term

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def _variance_scale_term(self):
    """Helper to `_covariance` and `_variance` which computes a shared scale."""
    return math_ops.rsqrt(1. + self.total_concentration[..., array_ops.newaxis]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:dirichlet.py

示例9: per_image_standardization

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def per_image_standardization(image):
  """Linearly scales `image` to have zero mean and unit norm.

  This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
  of all values in image, and
  `adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.

  `stddev` is the standard deviation of all values in `image`. It is capped
  away from zero to protect against division by 0 when handling uniform images.

  Args:
    image: 3-D tensor of shape `[height, width, channels]`.

  Returns:
    The standardized image with same shape as `image`.

  Raises:
    ValueError: if the shape of 'image' is incompatible with this function.
  """
  image = ops.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=False)
  num_pixels = math_ops.reduce_prod(array_ops.shape(image))

  image = math_ops.cast(image, dtype=dtypes.float32)
  image_mean = math_ops.reduce_mean(image)

  variance = (math_ops.reduce_mean(math_ops.square(image)) -
              math_ops.square(image_mean))
  variance = gen_nn_ops.relu(variance)
  stddev = math_ops.sqrt(variance)

  # Apply a minimum normalization that protects us against uniform images.
  min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
  pixel_value_scale = math_ops.maximum(stddev, min_stddev)
  pixel_value_offset = image_mean

  image = math_ops.subtract(image, pixel_value_offset)
  image = math_ops.div(image, pixel_value_scale)
  return image 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:41,代碼來源:image_ops_impl.py

示例10: l2_normalize

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def l2_normalize(x, dim, epsilon=1e-12, name=None):
  """Normalizes along dimension `dim` using an L2 norm.

  For a 1-D tensor with `dim = 0`, computes

      output = x / sqrt(max(sum(x**2), epsilon))

  For `x` with more dimensions, independently normalizes each 1-D slice along
  dimension `dim`.

  Args:
    x: A `Tensor`.
    dim: Dimension along which to normalize.  A scalar or a vector of
      integers.
    epsilon: A lower bound value for the norm. Will use `sqrt(epsilon)` as the
      divisor if `norm < sqrt(epsilon)`.
    name: A name for this operation (optional).

  Returns:
    A `Tensor` with the same shape as `x`.
  """
  with ops.name_scope(name, "l2_normalize", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    square_sum = math_ops.reduce_sum(math_ops.square(x), dim, keep_dims=True)
    x_inv_norm = math_ops.rsqrt(math_ops.maximum(square_sum, epsilon))
    return math_ops.multiply(x, x_inv_norm, name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:28,代碼來源:nn_impl.py

示例11: l2_normalize

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def l2_normalize(x, dim, epsilon=1e-12, name=None):
  """Normalizes along dimension `dim` using an L2 norm.

  For a 1-D tensor with `dim = 0`, computes

      output = x / sqrt(max(sum(x**2), epsilon))

  For `x` with more dimensions, independently normalizes each 1-D slice along
  dimension `dim`.

  Args:
    x: A `Tensor`.
    dim: Dimension along which to normalize.  A scalar or a vector of
      integers.
    epsilon: A lower bound value for the norm. Will use `sqrt(epsilon)` as the
      divisor if `norm < sqrt(epsilon)`.
    name: A name for this operation (optional).

  Returns:
    A `Tensor` with the same shape as `x`.
  """
  with ops.name_scope(name, "l2_normalize", [x]) as name:
    x = ops.convert_to_tensor(x, name="x")
    square_sum = math_ops.reduce_sum(math_ops.square(x), dim, keep_dims=True)
    x_inv_norm = math_ops.rsqrt(math_ops.maximum(square_sum, epsilon))
    return math_ops.mul(x, x_inv_norm, name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:nn.py

示例12: call

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def call(self, inputs):
    inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
    ndim = self._input_rank

    if self.rectify:
      inputs = nn.relu(inputs)

    # Compute normalization pool.
    if ndim == 2:
      norm_pool = math_ops.matmul(math_ops.square(inputs), self.gamma)
      norm_pool = nn.bias_add(norm_pool, self.beta)
    elif self.data_format == "channels_last" and ndim <= 5:
      shape = self.gamma.shape.as_list()
      gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)
      norm_pool = nn.convolution(math_ops.square(inputs), gamma, "VALID")
      norm_pool = nn.bias_add(norm_pool, self.beta)
    else:  # generic implementation
      # This puts channels in the last dimension regardless of input.
      norm_pool = math_ops.tensordot(
          math_ops.square(inputs), self.gamma, [[self._channel_axis()], [0]])
      norm_pool += self.beta
      if self.data_format == "channels_first":
        # Return to channels_first format if necessary.
        axes = list(range(ndim - 1))
        axes.insert(1, ndim - 1)
        norm_pool = array_ops.transpose(norm_pool, axes)

    if self.inverse:
      norm_pool = math_ops.sqrt(norm_pool)
    else:
      norm_pool = math_ops.rsqrt(norm_pool)
    outputs = inputs * norm_pool

    if not context.executing_eagerly():
      outputs.set_shape(self.compute_output_shape(inputs.shape))
    return outputs 
開發者ID:mauriceqch,項目名稱:pcc_geo_cnn,代碼行數:38,代碼來源:gdn.py

示例13: _test_rsqrt

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def _test_rsqrt(data):
    """ One iteration of rsqrt """
    return _test_unary_elemwise(math_ops.rsqrt, data)
#######################################################################
# Neg
# --- 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:8,代碼來源:test_forward.py

示例14: call

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def call(self, inputs, training=None):
    if training is None:
      training = K.learning_phase()

    conv_out = super(_DepthwiseConvBatchNorm2D, self).call(inputs)

    self.batchnorm.call(conv_out)

    folded_conv_kernel_multiplier = self.batchnorm.gamma * math_ops.rsqrt(
        self.batchnorm.moving_variance + self.batchnorm.epsilon)

    folded_conv_bias = math_ops.subtract(
        self.batchnorm.beta,
        self.batchnorm.moving_mean * folded_conv_kernel_multiplier,
        name='folded_conv_bias')

    depthwise_weights_shape = [
        self.depthwise_kernel.get_shape().as_list()[2],
        self.depthwise_kernel.get_shape().as_list()[3]
    ]
    folded_conv_kernel_multiplier = array_ops.reshape(
        folded_conv_kernel_multiplier, depthwise_weights_shape)

    folded_conv_kernel = math_ops.mul(
        folded_conv_kernel_multiplier,
        self.depthwise_kernel,
        name='folded_conv_kernel')

    if self.is_quantized:
      folded_conv_kernel = self._apply_weight_quantizer(training,
                                                        folded_conv_kernel)

    # TODO(alanchiao): this is an internal API.
    # See if Keras would make this public, like
    # backend.conv2d is.
    #
    # From DepthwiseConv2D layer call() function.
    folded_conv_out = K.depthwise_conv2d(
        inputs,
        folded_conv_kernel,
        strides=self.strides,
        padding=self.padding,
        dilation_rate=self.dilation_rate,
        data_format=self.data_format,
    )

    outputs = K.bias_add(
        folded_conv_out, folded_conv_bias, data_format=self.data_format)

    if self.post_activation is not None:
      outputs = self.post_activation(outputs)
    if self.is_quantized:
      outputs = self._apply_activation_quantizer(training, outputs)
    return outputs 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:56,代碼來源:conv_batchnorm.py

示例15: clip_by_norm

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import rsqrt [as 別名]
def clip_by_norm(t, clip_norm, axes=None, name=None):
  """Clips tensor values to a maximum L2-norm.

  Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
  normalizes `t` so that its L2-norm is less than or equal to `clip_norm`,
  along the dimensions given in `axes`. Specifically, in the default case
  where all dimensions are used for calculation, if the L2-norm of `t` is
  already less than or equal to `clip_norm`, then `t` is not modified. If
  the L2-norm is greater than `clip_norm`, then this operation returns a
  tensor of the same type and shape as `t` with its values set to:

  `t * clip_norm / l2norm(t)`

  In this case, the L2-norm of the output tensor is `clip_norm`.

  As another example, if `t` is a matrix and `axes == [1]`, then each row
  of the output will have L2-norm equal to `clip_norm`. If `axes == [0]`
  instead, each column of the output will be clipped.

  This operation is typically used to clip gradients before applying them with
  an optimizer.

  Args:
    t: A `Tensor`.
    clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
    axes: A 1-D (vector) `Tensor` of type int32 containing the dimensions
      to use for computing the L2-norm. If `None` (the default), uses all
      dimensions.
    name: A name for the operation (optional).

  Returns:
    A clipped `Tensor`.
  """
  with ops.name_scope(name, "clip_by_norm", [t, clip_norm]) as name:
    t = ops.convert_to_tensor(t, name="t")

    # Calculate L2-norm, clip elements by ratio of clip_norm to L2-norm
    l2norm_inv = math_ops.rsqrt(
        math_ops.reduce_sum(t * t, axes, keep_dims=True))
    intermediate = t * clip_norm
    # Assert that the shape is compatible with the initial shape,
    # to prevent unintentional broadcasting.
    _ = t.shape.merge_with(intermediate.shape)
    tclip = array_ops.identity(intermediate * math_ops.minimum(
        l2norm_inv, constant_op.constant(1.0, dtype=t.dtype) / clip_norm),
                               name=name)

  return tclip 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:50,代碼來源:clip_ops.py


注:本文中的tensorflow.python.ops.math_ops.rsqrt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。