本文整理匯總了Python中tensorflow.python.ops.math_ops.reduce_min方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.reduce_min方法的具體用法?Python math_ops.reduce_min怎麽用?Python math_ops.reduce_min使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.reduce_min方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _MatrixSetDiagGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def _MatrixSetDiagGrad(op, grad):
"""Gradient for MatrixSetDiag."""
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例2: min
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def min(x, axis=None, keepdims=False):
"""Minimum value in a tensor.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to find minimum values.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
Returns:
A tensor with miminum values of `x`.
"""
axis = _normalize_axis(axis, ndim(x))
return math_ops.reduce_min(x, reduction_indices=axis, keep_dims=keepdims)
示例3: _assert_non_singular
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def _assert_non_singular(self):
"""Private default implementation of _assert_non_singular."""
logging.warn(
"Using (possibly slow) default implementation of assert_non_singular."
" Requires conversion to a dense matrix and O(N^3) operations.")
if self._can_use_cholesky():
return self.assert_positive_definite()
else:
singular_values = linalg_ops.svd(
self._get_cached_dense_matrix(), compute_uv=False)
# TODO(langmore) Add .eig and .cond as methods.
cond = (math_ops.reduce_max(singular_values, axis=-1) /
math_ops.reduce_min(singular_values, axis=-1))
return check_ops.assert_less(
cond,
self._max_condition_number_to_be_non_singular(),
message="Singular matrix up to precision epsilon.")
raise NotImplementedError("assert_non_singular is not implemented.")
示例4: _MatrixSetDiagGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def _MatrixSetDiagGrad(op, grad):
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例5: masked_maximum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def masked_maximum(data, mask, dim=1):
"""Computes the axis wise maximum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the maximum.
Returns:
masked_maximums: N-D `Tensor`.
The maximized dimension is of size 1 after the operation.
"""
axis_minimums = math_ops.reduce_min(data, dim, keepdims=True)
masked_maximums = math_ops.reduce_max(
math_ops.multiply(data - axis_minimums, mask), dim,
keepdims=True) + axis_minimums
return masked_maximums
示例6: masked_minimum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def masked_minimum(data, mask, dim=1):
"""Computes the axis wise minimum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the minimum.
Returns:
masked_minimums: N-D `Tensor`.
The minimized dimension is of size 1 after the operation.
"""
axis_maximums = math_ops.reduce_max(data, dim, keepdims=True)
masked_minimums = math_ops.reduce_min(
math_ops.multiply(data - axis_maximums, mask), dim,
keepdims=True) + axis_maximums
return masked_minimums
示例7: masked_maximum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def masked_maximum(data, mask, dim=1):
"""Computes the axis wise maximum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the maximum.
Returns:
masked_maximums: N-D `Tensor`.
The maximized dimension is of size 1 after the operation.
"""
axis_minimums = math_ops.reduce_min(data, dim, keep_dims=True)
masked_maximums = math_ops.reduce_max(
math_ops.multiply(
data - axis_minimums, mask), dim, keep_dims=True) + axis_minimums
return masked_maximums
示例8: masked_minimum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def masked_minimum(data, mask, dim=1):
"""Computes the axis wise minimum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the minimum.
Returns:
masked_minimums: N-D `Tensor`.
The minimized dimension is of size 1 after the operation.
"""
axis_maximums = math_ops.reduce_max(data, dim, keep_dims=True)
masked_minimums = math_ops.reduce_min(
math_ops.multiply(
data - axis_maximums, mask), dim, keep_dims=True) + axis_maximums
return masked_minimums
示例9: _MatrixSetDiagGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def _MatrixSetDiagGrad(op, grad):
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat(0, [batch_shape, [min_dim]])
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例10: _ones_diag
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def _ones_diag(self):
"""Returns the diagonal of this operator as all ones."""
if self.shape.is_fully_defined():
d_shape = self.batch_shape.concatenate(
[min(self.domain_dimension.value, self.range_dimension.value)])
else:
d_shape = array_ops.concat(
[self.batch_shape_tensor(),
[math_ops.reduce_min(self.shape_tensor()[-2:])]], axis=0)
return array_ops.ones(shape=d_shape, dtype=self.dtype)
示例11: get_best
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def get_best(self, n):
"""Return the indices and values of the n highest scores in the TopN."""
def refresh_shortlist():
"""Update the shortlist with the highest scores in id_to_score."""
new_scores, new_ids = nn_ops.top_k(self.id_to_score, self.shortlist_size)
smallest_new_score = math_ops.reduce_min(new_scores)
new_length = math_ops.reduce_sum(
math_ops.to_int32(math_ops.greater(new_scores, dtypes.float32.min)))
u1 = self.sl_ids.assign(
math_ops.to_int64(array_ops.concat([[new_length], new_ids], 0)))
u2 = self.sl_scores.assign(
array_ops.concat([[smallest_new_score], new_scores], 0))
self.last_ops = [u1, u2]
return control_flow_ops.group(u1, u2)
# We only need to refresh the shortlist if n is greater than the
# current shortlist size (which is stored in sl_ids[0]).
with ops.control_dependencies(self.last_ops):
cond_op = control_flow_ops.cond(n > self.sl_ids[0], refresh_shortlist,
control_flow_ops.no_op)
with ops.control_dependencies([cond_op]):
topk_values, topk_indices = nn_ops.top_k(
self.sl_scores,
math_ops.minimum(n, math_ops.to_int32(self.sl_ids[0])))
# topk_indices are the indices into the shortlist, we want to return
# the indices into id_to_score
gathered_indices = array_ops.gather(self.sl_ids, topk_indices)
return gathered_indices, topk_values
示例12: test_name
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def test_name(self):
result_lt = ops.reduce_min(self.original_lt, {'channel'})
self.assertIn('lt_reduce_min', result_lt.name)
示例13: test
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def test(self):
result_lt = ops.reduce_min(self.original_lt, {'channel'})
golden_lt = core.LabeledTensor(
math_ops.reduce_min(self.original_lt.tensor, 1),
[self.a0, self.a2, self.a3])
self.assertLabeledTensorsEqual(result_lt, golden_lt)
示例14: compute_facility_energy
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def compute_facility_energy(pairwise_distances, centroid_ids):
"""Compute the average travel distance to the assigned centroid.
Args:
pairwise_distances: 2-D Tensor of pairwise distances.
centroid_ids: 1-D Tensor of indices.
Returns:
facility_energy: dtypes.float32 scalar.
"""
return -1.0 * math_ops.reduce_sum(
math_ops.reduce_min(
array_ops.gather(pairwise_distances, centroid_ids), axis=0))
示例15: compute_gt_cluster_score
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_min [as 別名]
def compute_gt_cluster_score(pairwise_distances, labels):
"""Compute ground truth facility location score.
Loop over each unique classes and compute average travel distances.
Args:
pairwise_distances: 2-D Tensor of pairwise distances.
labels: 1-D Tensor of ground truth cluster assignment.
Returns:
gt_cluster_score: dtypes.float32 score.
"""
unique_class_ids = array_ops.unique(labels)[0]
num_classes = array_ops.size(unique_class_ids)
iteration = array_ops.constant(0)
gt_cluster_score = array_ops.constant(0.0, dtype=dtypes.float32)
def func_cond(iteration, gt_cluster_score):
del gt_cluster_score # Unused argument.
return iteration < num_classes
def func_body(iteration, gt_cluster_score):
"""Per each cluster, compute the average travel distance."""
mask = math_ops.equal(labels, unique_class_ids[iteration])
this_cluster_ids = array_ops.where(mask)
pairwise_distances_subset = array_ops.transpose(
array_ops.gather(
array_ops.transpose(
array_ops.gather(pairwise_distances, this_cluster_ids)),
this_cluster_ids))
this_cluster_score = -1.0 * math_ops.reduce_min(
math_ops.reduce_sum(
pairwise_distances_subset, axis=0))
return iteration + 1, gt_cluster_score + this_cluster_score
_, gt_cluster_score = control_flow_ops.while_loop(
func_cond, func_body, [iteration, gt_cluster_score])
return gt_cluster_score