本文整理匯總了Python中tensorflow.python.ops.math_ops.reduce_max方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.reduce_max方法的具體用法?Python math_ops.reduce_max怎麽用?Python math_ops.reduce_max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.reduce_max方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: max
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def max(x, axis=None, keepdims=False):
"""Maximum value in a tensor.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to find maximum values.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
Returns:
A tensor with maximum values of `x`.
"""
axis = _normalize_axis(axis, ndim(x))
return math_ops.reduce_max(x, reduction_indices=axis, keep_dims=keepdims)
示例2: _assert_non_singular
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def _assert_non_singular(self):
"""Private default implementation of _assert_non_singular."""
logging.warn(
"Using (possibly slow) default implementation of assert_non_singular."
" Requires conversion to a dense matrix and O(N^3) operations.")
if self._can_use_cholesky():
return self.assert_positive_definite()
else:
singular_values = linalg_ops.svd(
self._get_cached_dense_matrix(), compute_uv=False)
# TODO(langmore) Add .eig and .cond as methods.
cond = (math_ops.reduce_max(singular_values, axis=-1) /
math_ops.reduce_min(singular_values, axis=-1))
return check_ops.assert_less(
cond,
self._max_condition_number_to_be_non_singular(),
message="Singular matrix up to precision epsilon.")
raise NotImplementedError("assert_non_singular is not implemented.")
示例3: __call__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def __call__(self, inputs, state, scope=None):
"""Build the CrfDecodeForwardRnnCell.
Args:
inputs: A [batch_size, num_tags] matrix of unary potentials.
state: A [batch_size, num_tags] matrix containing the previous step's
score values.
scope: Unused variable scope of this cell.
Returns:
backpointers: [batch_size, num_tags], containing backpointers.
new_state: [batch_size, num_tags], containing new score values.
"""
# For simplicity, in shape comments, denote:
# 'batch_size' by 'B', 'max_seq_len' by 'T' , 'num_tags' by 'O' (output).
state = array_ops.expand_dims(state, 2) # [B, O, 1]
# This addition op broadcasts self._transitions_params along the zeroth
# dimension and state along the second dimension.
# [B, O, 1] + [1, O, O] -> [B, O, O]
transition_scores = state + self._transition_params # [B, O, O]
new_state = inputs + math_ops.reduce_max(transition_scores, [1]) # [B, O]
backpointers = math_ops.argmax(transition_scores, 1)
backpointers = math_ops.cast(backpointers, dtype=dtypes.int32) # [B, O]
return backpointers, new_state
示例4: masked_maximum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def masked_maximum(data, mask, dim=1):
"""Computes the axis wise maximum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the maximum.
Returns:
masked_maximums: N-D `Tensor`.
The maximized dimension is of size 1 after the operation.
"""
axis_minimums = math_ops.reduce_min(data, dim, keepdims=True)
masked_maximums = math_ops.reduce_max(
math_ops.multiply(data - axis_minimums, mask), dim,
keepdims=True) + axis_minimums
return masked_maximums
示例5: masked_minimum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def masked_minimum(data, mask, dim=1):
"""Computes the axis wise minimum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the minimum.
Returns:
masked_minimums: N-D `Tensor`.
The minimized dimension is of size 1 after the operation.
"""
axis_maximums = math_ops.reduce_max(data, dim, keepdims=True)
masked_minimums = math_ops.reduce_min(
math_ops.multiply(data - axis_maximums, mask), dim,
keepdims=True) + axis_maximums
return masked_minimums
示例6: masked_maximum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def masked_maximum(data, mask, dim=1):
"""Computes the axis wise maximum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the maximum.
Returns:
masked_maximums: N-D `Tensor`.
The maximized dimension is of size 1 after the operation.
"""
axis_minimums = math_ops.reduce_min(data, dim, keep_dims=True)
masked_maximums = math_ops.reduce_max(
math_ops.multiply(
data - axis_minimums, mask), dim, keep_dims=True) + axis_minimums
return masked_maximums
示例7: masked_minimum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def masked_minimum(data, mask, dim=1):
"""Computes the axis wise minimum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the minimum.
Returns:
masked_minimums: N-D `Tensor`.
The minimized dimension is of size 1 after the operation.
"""
axis_maximums = math_ops.reduce_max(data, dim, keep_dims=True)
masked_minimums = math_ops.reduce_min(
math_ops.multiply(
data - axis_maximums, mask), dim, keep_dims=True) + axis_maximums
return masked_minimums
示例8: advanced_softmax
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def advanced_softmax(logits, mask=None):
""" Computes softmax function manually.
Avoids numeric overflow.
Args:
logits: A Tensor. The softmax will apply on the last dimension of it.
mask: A Tensor with the same shape as `logits`.
Returns: The softmax results.
"""
num_shapes = logits.get_shape().ndims
if mask is not None:
scores_exp = math_ops.exp(logits - math_ops.reduce_max(logits, axis=num_shapes - 1, keepdims=True)) * mask
else:
scores_exp = math_ops.exp(logits - math_ops.reduce_max(logits, axis=num_shapes - 1, keepdims=True))
scores_sum = math_ops.reduce_sum(scores_exp, axis=num_shapes - 1, keepdims=True)
x_sm = scores_exp / scores_sum
return x_sm
示例9: __call__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def __call__(self, inputs, state, scope=None):
"""Build the CrfDecodeForwardRnnCell.
Args:
inputs: A [batch_size, num_tags] matrix of unary potentials.
state: A [batch_size, num_tags] matrix containing the previous step's
score values.
scope: Unused variable scope of this cell.
Returns:
backpointers: [batch_size, num_tags], containing backpointers.
new_state: [batch_size, num_tags], containing new score values.
"""
# For simplicity, in shape comments, denote:
# 'batch_size' by 'B', 'max_seq_len' by 'T' , 'num_tags' by 'O' (output).
state = array_ops.expand_dims(state, 2) # [B, O, 1]
# This addition op broadcasts self._transitions_params along the zeroth
# dimension and state along the second dimension.
# [B, O, 1] + [1, O, O] -> [B, O, O]
transition_scores = state + self._transition_params # [B, O, O]
new_state = inputs + math_ops.reduce_max(transition_scores, [1]) # [B, O]
backpointers = math_ops.argmax(transition_scores, 1)
backpointers = math_ops.cast(backpointers, dtype=dtypes.int32) # [B, O]
return backpointers, new_state
示例10: visualize
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def visualize(self):
"""Multi-channel visualization of densities as images.
Creates and returns an image summary visualizing the current probabilty
density estimates. The image contains one row for each channel. Within each
row, the pixel intensities are proportional to probability values, and each
row is centered on the median of the corresponding distribution.
Returns:
The created image summary.
"""
with ops.name_scope(self._name_scope()):
image = self._pmf
image *= 255 / math_ops.reduce_max(image, axis=1, keepdims=True)
image = math_ops.cast(image + .5, dtypes.uint8)
image = image[None, :, :, None]
return summary.image("pmf", image, max_outputs=1)
示例11: call
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def call(self, inputs):
inputs = ops.convert_to_tensor(inputs)
shape = inputs.get_shape().as_list()
num_channels = shape[self.axis]
if num_channels % self.num_units:
raise ValueError('number of features({}) is not '
'a multiple of num_units({})'
.format(num_channels, self.num_units))
shape[self.axis] = -1
shape += [num_channels // self.num_units]
# Dealing with batches with arbitrary sizes
for i in range(len(shape)):
if shape[i] is None:
shape[i] = gen_array_ops.shape(inputs)[i]
outputs = math_ops.reduce_max(gen_array_ops.reshape(inputs, shape), -1, keep_dims=False)
return outputs
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:20,代碼來源:maxout.py
示例12: _max_condition_number_to_be_non_singular
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def _max_condition_number_to_be_non_singular(self):
"""Return the maximum condition number that we consider nonsingular."""
with ops.name_scope("max_nonsingular_condition_number"):
dtype_eps = np.finfo(self.dtype.as_numpy_dtype).eps
eps = math_ops.cast(
math_ops.reduce_max([
100.,
math_ops.cast(self.range_dimension_tensor(), self.dtype),
math_ops.cast(self.domain_dimension_tensor(), self.dtype)
]), self.dtype) * dtype_eps
return 1. / eps
示例13: test_name
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def test_name(self):
result_lt = ops.reduce_max(self.original_lt, {'channel'})
self.assertIn('lt_reduce_max', result_lt.name)
示例14: test
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def test(self):
result_lt = ops.reduce_max(self.original_lt, {'channel'})
golden_lt = core.LabeledTensor(
math_ops.reduce_max(self.original_lt.tensor, 1),
[self.a0, self.a2, self.a3])
self.assertLabeledTensorsEqual(result_lt, golden_lt)
示例15: _sample_max
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_max [as 別名]
def _sample_max(values):
"""Max over sample indices. In this module this is always [0]."""
return math_ops.reduce_max(values, reduction_indices=[0])