本文整理匯總了Python中tensorflow.python.ops.math_ops.reduce_all方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.reduce_all方法的具體用法?Python math_ops.reduce_all怎麽用?Python math_ops.reduce_all使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.reduce_all方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _parse_image
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def _parse_image(self, image_path):
"""
Function that loads the images given the path.
Args:
image_path: Path to an image file.
Returns:
image: A tf tensor of the loaded image.
"""
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.convert_image_dtype(image, tf.float32)
# Check if image is large enough
if tf.keras.backend.image_data_format() == 'channels_last':
shape = array_ops.shape(image)[:2]
else:
shape = array_ops.shape(image)[1:]
cond = math_ops.reduce_all(shape >= tf.constant(self.image_size))
image = tf.cond(cond, lambda: tf.identity(image),
lambda: tf.image.resize(image, [self.image_size, self.image_size]))
return image
示例2: is_non_decreasing
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def is_non_decreasing(x, name=None):
"""Returns `True` if `x` is non-decreasing.
Elements of `x` are compared in row-major order. The tensor `[x[0],...]`
is non-decreasing if for every adjacent pair we have `x[i] <= x[i+1]`.
If `x` has less than two elements, it is trivially non-decreasing.
See also: `is_strictly_increasing`
Args:
x: Numeric `Tensor`.
name: A name for this operation (optional). Defaults to "is_non_decreasing"
Returns:
Boolean `Tensor`, equal to `True` iff `x` is non-decreasing.
Raises:
TypeError: if `x` is not a numeric tensor.
"""
with ops.name_scope(name, 'is_non_decreasing', [x]):
diff = _get_diff_for_monotonic_comparison(x)
# When len(x) = 1, diff = [], less_equal = [], and reduce_all([]) = True.
zero = ops.convert_to_tensor(0, dtype=diff.dtype)
return math_ops.reduce_all(math_ops.less_equal(zero, diff))
示例3: is_strictly_increasing
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def is_strictly_increasing(x, name=None):
"""Returns `True` if `x` is strictly increasing.
Elements of `x` are compared in row-major order. The tensor `[x[0],...]`
is strictly increasing if for every adjacent pair we have `x[i] < x[i+1]`.
If `x` has less than two elements, it is trivially strictly increasing.
See also: `is_non_decreasing`
Args:
x: Numeric `Tensor`.
name: A name for this operation (optional).
Defaults to "is_strictly_increasing"
Returns:
Boolean `Tensor`, equal to `True` iff `x` is strictly increasing.
Raises:
TypeError: if `x` is not a numeric tensor.
"""
with ops.name_scope(name, 'is_strictly_increasing', [x]):
diff = _get_diff_for_monotonic_comparison(x)
# When len(x) = 1, diff = [], less = [], and reduce_all([]) = True.
zero = ops.convert_to_tensor(0, dtype=diff.dtype)
return math_ops.reduce_all(math_ops.less(zero, diff))
示例4: next_inputs
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def next_inputs(self, sample_ids, time):
def true_fn():
# If we're in the last time step
finished = tf.fill(sample_ids.get_shape().as_list(), True)
next_inputs = tf.zeros([self.params['beam_width'], 1,
self.params["embedding_dim"]])
return finished, next_inputs
def false_fn():
finished = math_ops.equal(sample_ids, self.end_token)
all_finished = math_ops.reduce_all(finished)
end_tokens = tf.tile([self.end_token], [self.params['beam_width']])
next_inputs = control_flow_ops.cond(
all_finished,
# If we're finished, the next_inputs value doesn't matter
lambda: self.add_embedding(end_tokens, time),
lambda: self.add_embedding(sample_ids, time))
return finished, next_inputs
finished = (time >= self.max_sequence_length)
return control_flow_ops.cond(finished, true_fn, false_fn)
示例5: next_inputs
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def next_inputs(self, time, outputs, state, name=None, **unused_kwargs):
# Applies the fully connected pre-net to the decoder
# Also decides whether the decoder is finished
next_time = time + 1
if self._mask_decoder_sequence:
finished = (next_time >= self._sequence_length)
else:
finished = array_ops.tile([False], [self._batch_size])
all_finished = math_ops.reduce_all(finished)
def get_next_input(inp, out):
next_input = inp.read(time)
if self._prenet is not None:
next_input = self._prenet(next_input)
out = self._prenet(out)
return next_input
next_inputs = control_flow_ops.cond(
all_finished, lambda: self._start_inputs,
lambda: get_next_input(self._input_tas, outputs)
)
return (finished, next_inputs, state)
示例6: initialize
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def initialize(self, name=None):
with ops.name_scope(name, "TrainingHelperInitialize"):
finished = math_ops.equal(0, self._sequence_length)
all_finished = math_ops.reduce_all(finished)
next_inputs = control_flow_ops.cond(
all_finished, lambda: self._zero_inputs,
lambda: nest.map_structure(lambda inp: inp.read(0), self._input_tas))
return (finished, next_inputs)
示例7: next_inputs
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def next_inputs(self, time, outputs, state, name=None, **unused_kwargs):
"""Gets the inputs for next step."""
with ops.name_scope(name, "TrainingHelperNextInputs",
[time, outputs, state]):
next_time = time + 1
finished = (next_time >= self._sequence_length)
all_finished = math_ops.reduce_all(finished)
def read_from_ta(inp):
return inp.read(next_time)
next_inputs = control_flow_ops.cond(
all_finished, lambda: self._zero_inputs,
lambda: nest.map_structure(read_from_ta, self._input_tas))
return (finished, next_inputs, state)
示例8: assert_none_equal
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_none_equal(
x, y, data=None, summarize=None, message=None, name=None):
"""Assert the condition `x != y` holds for all elements.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_none_equal(x, y)]):
output = tf.reduce_sum(x)
```
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] != y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional).
Defaults to "assert_none_equal".
Returns:
Op that raises `InvalidArgumentError` if `x != y` is ever False.
"""
message = message or ''
with ops.name_scope(name, 'assert_none_equal', [x, y, data]):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
message,
'Condition x != y did not hold for every single element:'
'x (%s) = ' % x.name, x,
'y (%s) = ' % y.name, y
]
condition = math_ops.reduce_all(math_ops.not_equal(x, y))
return control_flow_ops.Assert(condition, data, summarize=summarize)
示例9: assert_less
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_less(x, y, data=None, summarize=None, message=None, name=None):
"""Assert the condition `x < y` holds element-wise.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_less(x, y)]):
output = tf.reduce_sum(x)
```
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] < y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional). Defaults to "assert_less".
Returns:
Op that raises `InvalidArgumentError` if `x < y` is False.
"""
message = message or ''
with ops.name_scope(name, 'assert_less', [x, y, data]):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
message,
'Condition x < y did not hold element-wise:'
'x (%s) = ' % x.name, x, 'y (%s) = ' % y.name, y
]
condition = math_ops.reduce_all(math_ops.less(x, y))
return control_flow_ops.Assert(condition, data, summarize=summarize)
示例10: assert_less_equal
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_less_equal(x, y, data=None, summarize=None, message=None, name=None):
"""Assert the condition `x <= y` holds element-wise.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_less_equal(x, y)]):
output = tf.reduce_sum(x)
```
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] <= y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional). Defaults to "assert_less_equal"
Returns:
Op that raises `InvalidArgumentError` if `x <= y` is False.
"""
message = message or ''
with ops.name_scope(name, 'assert_less_equal', [x, y, data]):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
message,
'Condition x <= y did not hold element-wise:'
'x (%s) = ' % x.name, x, 'y (%s) = ' % y.name, y
]
condition = math_ops.reduce_all(math_ops.less_equal(x, y))
return control_flow_ops.Assert(condition, data, summarize=summarize)
示例11: assert_greater
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_greater(x, y, data=None, summarize=None, message=None, name=None):
"""Assert the condition `x > y` holds element-wise.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_greater(x, y)]):
output = tf.reduce_sum(x)
```
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] > y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional). Defaults to "assert_greater".
Returns:
Op that raises `InvalidArgumentError` if `x > y` is False.
"""
message = message or ''
with ops.name_scope(name, 'assert_greater', [x, y, data]):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
message,
'Condition x > y did not hold element-wise:'
'x (%s) = ' % x.name, x, 'y (%s) = ' % y.name, y
]
condition = math_ops.reduce_all(math_ops.greater(x, y))
return control_flow_ops.Assert(condition, data, summarize=summarize)
示例12: assert_close
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_close(
x, y, data=None, summarize=None, message=None, name="assert_close"):
"""Assert that that x and y are within machine epsilon of each other.
Args:
x: Floating-point `Tensor`
y: Floating-point `Tensor`
data: The tensors to print out if the condition is `False`. Defaults to
error message and first few entries of `x` and `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional).
Returns:
Op raising `InvalidArgumentError` if |x - y| > machine epsilon.
"""
message = message or ""
x = ops.convert_to_tensor(x, name="x")
y = ops.convert_to_tensor(y, name="y")
if data is None:
data = [
message,
"Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ",
y.name, y
]
if x.dtype.is_integer:
return check_ops.assert_equal(
x, y, data=data, summarize=summarize, message=message, name=name)
with ops.name_scope(name, "assert_close", [x, y, data]):
tol = np.finfo(x.dtype.as_numpy_dtype).eps
condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x-y), tol))
return control_flow_ops.Assert(
condition, data, summarize=summarize)
示例13: same_dynamic_shape
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def same_dynamic_shape(a, b):
"""Returns whether a and b have the same dynamic shape.
Args:
a: `Tensor`
b: `Tensor`
Returns:
`bool` `Tensor` representing if both tensors have the same shape.
"""
a = ops.convert_to_tensor(a, name="a")
b = ops.convert_to_tensor(b, name="b")
# Here we can't just do math_ops.equal(a.shape, b.shape), since
# static shape inference may break the equality comparison between
# shape(a) and shape(b) in math_ops.equal.
def all_shapes_equal():
return math_ops.reduce_all(math_ops.equal(
array_ops.concat([array_ops.shape(a), array_ops.shape(b)], 0),
array_ops.concat([array_ops.shape(b), array_ops.shape(a)], 0)))
# One of the shapes isn't fully defined, so we need to use the dynamic
# shape.
return control_flow_ops.cond(
math_ops.equal(array_ops.rank(a), array_ops.rank(b)),
all_shapes_equal,
lambda: constant_op.constant(False))
示例14: _logical_and
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def _logical_and(*args):
"""Convenience function which attempts to statically `reduce_all`."""
args_ = [_static_value(x) for x in args]
if any(x is not None and not bool(x) for x in args_):
return constant_op.constant(False)
if all(x is not None and bool(x) for x in args_):
return constant_op.constant(True)
if len(args) == 2:
return math_ops.logical_and(*args)
return math_ops.reduce_all(args)
示例15: random_crop
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def random_crop(value, size, seed=None, name=None):
"""Randomly crops a tensor to a given size.
Slices a shape `size` portion out of `value` at a uniformly chosen offset.
Requires `value.shape >= size`.
If a dimension should not be cropped, pass the full size of that dimension.
For example, RGB images can be cropped with
`size = [crop_height, crop_width, 3]`.
Args:
value: Input tensor to crop.
size: 1-D tensor with size the rank of `value`.
seed: Python integer. Used to create a random seed. See
@{tf.set_random_seed}
for behavior.
name: A name for this operation (optional).
Returns:
A cropped tensor of the same rank as `value` and shape `size`.
"""
# TODO(shlens): Implement edge case to guarantee output size dimensions.
# If size > value.shape, zero pad the result so that it always has shape
# exactly size.
with ops.name_scope(name, "random_crop", [value, size]) as name:
value = ops.convert_to_tensor(value, name="value")
size = ops.convert_to_tensor(size, dtype=dtypes.int32, name="size")
shape = array_ops.shape(value)
check = control_flow_ops.Assert(
math_ops.reduce_all(shape >= size),
["Need value.shape >= size, got ", shape, size],
summarize=1000)
shape = control_flow_ops.with_dependencies([check], shape)
limit = shape - size + 1
offset = random_uniform(
array_ops.shape(shape),
dtype=size.dtype,
maxval=size.dtype.max,
seed=seed) % limit
return array_ops.slice(value, offset, size, name=name)