當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.reduce_all方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.reduce_all方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.reduce_all方法的具體用法?Python math_ops.reduce_all怎麽用?Python math_ops.reduce_all使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.reduce_all方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _parse_image

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def _parse_image(self, image_path):
        """
        Function that loads the images given the path.
        Args:
            image_path: Path to an image file.
        Returns:
            image: A tf tensor of the loaded image.
        """

        image = tf.io.read_file(image_path)
        image = tf.image.decode_jpeg(image, channels=3)
        image = tf.image.convert_image_dtype(image, tf.float32)

        # Check if image is large enough
        if tf.keras.backend.image_data_format() == 'channels_last':
            shape = array_ops.shape(image)[:2]
        else:
            shape = array_ops.shape(image)[1:]
        cond = math_ops.reduce_all(shape >= tf.constant(self.image_size))

        image = tf.cond(cond, lambda: tf.identity(image),
                        lambda: tf.image.resize(image, [self.image_size, self.image_size]))

        return image 
開發者ID:HasnainRaz,項目名稱:Fast-SRGAN,代碼行數:26,代碼來源:dataloader.py

示例2: is_non_decreasing

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def is_non_decreasing(x, name=None):
  """Returns `True` if `x` is non-decreasing.

  Elements of `x` are compared in row-major order.  The tensor `[x[0],...]`
  is non-decreasing if for every adjacent pair we have `x[i] <= x[i+1]`.
  If `x` has less than two elements, it is trivially non-decreasing.

  See also:  `is_strictly_increasing`

  Args:
    x: Numeric `Tensor`.
    name: A name for this operation (optional).  Defaults to "is_non_decreasing"

  Returns:
    Boolean `Tensor`, equal to `True` iff `x` is non-decreasing.

  Raises:
    TypeError: if `x` is not a numeric tensor.
  """
  with ops.name_scope(name, 'is_non_decreasing', [x]):
    diff = _get_diff_for_monotonic_comparison(x)
    # When len(x) = 1, diff = [], less_equal = [], and reduce_all([]) = True.
    zero = ops.convert_to_tensor(0, dtype=diff.dtype)
    return math_ops.reduce_all(math_ops.less_equal(zero, diff)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:check_ops.py

示例3: is_strictly_increasing

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def is_strictly_increasing(x, name=None):
  """Returns `True` if `x` is strictly increasing.

  Elements of `x` are compared in row-major order.  The tensor `[x[0],...]`
  is strictly increasing if for every adjacent pair we have `x[i] < x[i+1]`.
  If `x` has less than two elements, it is trivially strictly increasing.

  See also:  `is_non_decreasing`

  Args:
    x: Numeric `Tensor`.
    name: A name for this operation (optional).
      Defaults to "is_strictly_increasing"

  Returns:
    Boolean `Tensor`, equal to `True` iff `x` is strictly increasing.

  Raises:
    TypeError: if `x` is not a numeric tensor.
  """
  with ops.name_scope(name, 'is_strictly_increasing', [x]):
    diff = _get_diff_for_monotonic_comparison(x)
    # When len(x) = 1, diff = [], less = [], and reduce_all([]) = True.
    zero = ops.convert_to_tensor(0, dtype=diff.dtype)
    return math_ops.reduce_all(math_ops.less(zero, diff)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:check_ops.py

示例4: next_inputs

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def next_inputs(self, sample_ids, time):
    def true_fn():
      # If we're in the last time step
      finished = tf.fill(sample_ids.get_shape().as_list(), True)
      next_inputs = tf.zeros([self.params['beam_width'], 1,
                              self.params["embedding_dim"]])
      return finished, next_inputs

    def false_fn():
      finished = math_ops.equal(sample_ids, self.end_token)
      all_finished = math_ops.reduce_all(finished)
      end_tokens = tf.tile([self.end_token], [self.params['beam_width']])
      next_inputs = control_flow_ops.cond(
          all_finished,
          # If we're finished, the next_inputs value doesn't matter
          lambda: self.add_embedding(end_tokens, time),
          lambda: self.add_embedding(sample_ids, time))
      return finished, next_inputs

    finished = (time >= self.max_sequence_length)
    return control_flow_ops.cond(finished, true_fn, false_fn) 
開發者ID:FangShancheng,項目名稱:conv-ensemble-str,代碼行數:23,代碼來源:decoder_conv.py

示例5: next_inputs

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def next_inputs(self, time, outputs, state, name=None, **unused_kwargs):
    # Applies the fully connected pre-net to the decoder
    # Also decides whether the decoder is finished
    next_time = time + 1
    if self._mask_decoder_sequence:
      finished = (next_time >= self._sequence_length)
    else:
      finished = array_ops.tile([False], [self._batch_size])
    all_finished = math_ops.reduce_all(finished)

    def get_next_input(inp, out):
      next_input = inp.read(time)
      if self._prenet is not None:
        next_input = self._prenet(next_input)
        out = self._prenet(out)
      return next_input

    next_inputs = control_flow_ops.cond(
        all_finished, lambda: self._start_inputs,
        lambda: get_next_input(self._input_tas, outputs)
    )

    return (finished, next_inputs, state) 
開發者ID:NVIDIA,項目名稱:OpenSeq2Seq,代碼行數:25,代碼來源:tacotron_helper.py

示例6: initialize

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def initialize(self, name=None):
        with ops.name_scope(name, "TrainingHelperInitialize"):
            finished = math_ops.equal(0, self._sequence_length)
            all_finished = math_ops.reduce_all(finished)
            next_inputs = control_flow_ops.cond(
                all_finished, lambda: self._zero_inputs,
                lambda: nest.map_structure(lambda inp: inp.read(0), self._input_tas))
            return (finished, next_inputs) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:10,代碼來源:tf_helpers.py

示例7: next_inputs

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def next_inputs(self, time, outputs, state, name=None, **unused_kwargs):
        """Gets the inputs for next step."""
        with ops.name_scope(name, "TrainingHelperNextInputs",
                            [time, outputs, state]):
            next_time = time + 1
            finished = (next_time >= self._sequence_length)
            all_finished = math_ops.reduce_all(finished)

            def read_from_ta(inp):
                return inp.read(next_time)

            next_inputs = control_flow_ops.cond(
                all_finished, lambda: self._zero_inputs,
                lambda: nest.map_structure(read_from_ta, self._input_tas))
            return (finished, next_inputs, state) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:17,代碼來源:tf_helpers.py

示例8: assert_none_equal

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_none_equal(
    x, y, data=None, summarize=None, message=None, name=None):
  """Assert the condition `x != y` holds for all elements.

  Example of adding a dependency to an operation:

  ```python
  with tf.control_dependencies([tf.assert_none_equal(x, y)]):
    output = tf.reduce_sum(x)
  ```

  This condition holds if for every pair of (possibly broadcast) elements
  `x[i]`, `y[i]`, we have `x[i] != y[i]`.
  If both `x` and `y` are empty, this is trivially satisfied.

  Args:
    x:  Numeric `Tensor`.
    y:  Numeric `Tensor`, same dtype as and broadcastable to `x`.
    data:  The tensors to print out if the condition is False.  Defaults to
      error message and first few entries of `x`, `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).
      Defaults to "assert_none_equal".

  Returns:
    Op that raises `InvalidArgumentError` if `x != y` is ever False.
  """
  message = message or ''
  with ops.name_scope(name, 'assert_none_equal', [x, y, data]):
    x = ops.convert_to_tensor(x, name='x')
    y = ops.convert_to_tensor(y, name='y')
    if data is None:
      data = [
          message,
          'Condition x != y did not hold for every single element:'
          'x (%s) = ' % x.name, x,
          'y (%s) = ' % y.name, y
      ]
    condition = math_ops.reduce_all(math_ops.not_equal(x, y))
    return control_flow_ops.Assert(condition, data, summarize=summarize) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:43,代碼來源:check_ops.py

示例9: assert_less

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_less(x, y, data=None, summarize=None, message=None, name=None):
  """Assert the condition `x < y` holds element-wise.

  Example of adding a dependency to an operation:

  ```python
  with tf.control_dependencies([tf.assert_less(x, y)]):
    output = tf.reduce_sum(x)
  ```

  This condition holds if for every pair of (possibly broadcast) elements
  `x[i]`, `y[i]`, we have `x[i] < y[i]`.
  If both `x` and `y` are empty, this is trivially satisfied.

  Args:
    x:  Numeric `Tensor`.
    y:  Numeric `Tensor`, same dtype as and broadcastable to `x`.
    data:  The tensors to print out if the condition is False.  Defaults to
      error message and first few entries of `x`, `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).  Defaults to "assert_less".

  Returns:
    Op that raises `InvalidArgumentError` if `x < y` is False.
  """
  message = message or ''
  with ops.name_scope(name, 'assert_less', [x, y, data]):
    x = ops.convert_to_tensor(x, name='x')
    y = ops.convert_to_tensor(y, name='y')
    if data is None:
      data = [
          message,
          'Condition x < y did not hold element-wise:'
          'x (%s) = ' % x.name, x, 'y (%s) = ' % y.name, y
      ]
    condition = math_ops.reduce_all(math_ops.less(x, y))
    return control_flow_ops.Assert(condition, data, summarize=summarize) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:40,代碼來源:check_ops.py

示例10: assert_less_equal

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_less_equal(x, y, data=None, summarize=None, message=None, name=None):
  """Assert the condition `x <= y` holds element-wise.

  Example of adding a dependency to an operation:

  ```python
  with tf.control_dependencies([tf.assert_less_equal(x, y)]):
    output = tf.reduce_sum(x)
  ```

  This condition holds if for every pair of (possibly broadcast) elements
  `x[i]`, `y[i]`, we have `x[i] <= y[i]`.
  If both `x` and `y` are empty, this is trivially satisfied.

  Args:
    x:  Numeric `Tensor`.
    y:  Numeric `Tensor`, same dtype as and broadcastable to `x`.
    data:  The tensors to print out if the condition is False.  Defaults to
      error message and first few entries of `x`, `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).  Defaults to "assert_less_equal"

  Returns:
    Op that raises `InvalidArgumentError` if `x <= y` is False.
  """
  message = message or ''
  with ops.name_scope(name, 'assert_less_equal', [x, y, data]):
    x = ops.convert_to_tensor(x, name='x')
    y = ops.convert_to_tensor(y, name='y')
    if data is None:
      data = [
          message,
          'Condition x <= y did not hold element-wise:'
          'x (%s) = ' % x.name, x, 'y (%s) = ' % y.name, y
      ]
    condition = math_ops.reduce_all(math_ops.less_equal(x, y))
    return control_flow_ops.Assert(condition, data, summarize=summarize) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:40,代碼來源:check_ops.py

示例11: assert_greater

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_greater(x, y, data=None, summarize=None, message=None, name=None):
  """Assert the condition `x > y` holds element-wise.

  Example of adding a dependency to an operation:

  ```python
  with tf.control_dependencies([tf.assert_greater(x, y)]):
    output = tf.reduce_sum(x)
  ```

  This condition holds if for every pair of (possibly broadcast) elements
  `x[i]`, `y[i]`, we have `x[i] > y[i]`.
  If both `x` and `y` are empty, this is trivially satisfied.

  Args:
    x:  Numeric `Tensor`.
    y:  Numeric `Tensor`, same dtype as and broadcastable to `x`.
    data:  The tensors to print out if the condition is False.  Defaults to
      error message and first few entries of `x`, `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).  Defaults to "assert_greater".

  Returns:
    Op that raises `InvalidArgumentError` if `x > y` is False.
  """
  message = message or ''
  with ops.name_scope(name, 'assert_greater', [x, y, data]):
    x = ops.convert_to_tensor(x, name='x')
    y = ops.convert_to_tensor(y, name='y')
    if data is None:
      data = [
          message,
          'Condition x > y did not hold element-wise:'
          'x (%s) = ' % x.name, x, 'y (%s) = ' % y.name, y
      ]
    condition = math_ops.reduce_all(math_ops.greater(x, y))
    return control_flow_ops.Assert(condition, data, summarize=summarize) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:40,代碼來源:check_ops.py

示例12: assert_close

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def assert_close(
    x, y, data=None, summarize=None, message=None, name="assert_close"):
  """Assert that that x and y are within machine epsilon of each other.

  Args:
    x: Floating-point `Tensor`
    y: Floating-point `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if |x - y| > machine epsilon.
  """
  message = message or ""
  x = ops.convert_to_tensor(x, name="x")
  y = ops.convert_to_tensor(y, name="y")

  if data is None:
    data = [
        message,
        "Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ",
        y.name, y
    ]

  if x.dtype.is_integer:
    return check_ops.assert_equal(
        x, y, data=data, summarize=summarize, message=message, name=name)

  with ops.name_scope(name, "assert_close", [x, y, data]):
    tol = np.finfo(x.dtype.as_numpy_dtype).eps
    condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x-y), tol))
    return control_flow_ops.Assert(
        condition, data, summarize=summarize) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:util.py

示例13: same_dynamic_shape

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def same_dynamic_shape(a, b):
  """Returns whether a and b have the same dynamic shape.

  Args:
    a: `Tensor`
    b: `Tensor`

  Returns:
    `bool` `Tensor` representing if both tensors have the same shape.
  """
  a = ops.convert_to_tensor(a, name="a")
  b = ops.convert_to_tensor(b, name="b")

  # Here we can't just do math_ops.equal(a.shape, b.shape), since
  # static shape inference may break the equality comparison between
  # shape(a) and shape(b) in math_ops.equal.
  def all_shapes_equal():
    return math_ops.reduce_all(math_ops.equal(
        array_ops.concat([array_ops.shape(a), array_ops.shape(b)], 0),
        array_ops.concat([array_ops.shape(b), array_ops.shape(a)], 0)))

  # One of the shapes isn't fully defined, so we need to use the dynamic
  # shape.
  return control_flow_ops.cond(
      math_ops.equal(array_ops.rank(a), array_ops.rank(b)),
      all_shapes_equal,
      lambda: constant_op.constant(False)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:29,代碼來源:util.py

示例14: _logical_and

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def _logical_and(*args):
  """Convenience function which attempts to statically `reduce_all`."""
  args_ = [_static_value(x) for x in args]
  if any(x is not None and not bool(x) for x in args_):
    return constant_op.constant(False)
  if all(x is not None and bool(x) for x in args_):
    return constant_op.constant(True)
  if len(args) == 2:
    return math_ops.logical_and(*args)
  return math_ops.reduce_all(args) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:transformed_distribution.py

示例15: random_crop

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reduce_all [as 別名]
def random_crop(value, size, seed=None, name=None):
  """Randomly crops a tensor to a given size.

  Slices a shape `size` portion out of `value` at a uniformly chosen offset.
  Requires `value.shape >= size`.

  If a dimension should not be cropped, pass the full size of that dimension.
  For example, RGB images can be cropped with
  `size = [crop_height, crop_width, 3]`.

  Args:
    value: Input tensor to crop.
    size: 1-D tensor with size the rank of `value`.
    seed: Python integer. Used to create a random seed. See
      @{tf.set_random_seed}
      for behavior.
    name: A name for this operation (optional).

  Returns:
    A cropped tensor of the same rank as `value` and shape `size`.
  """
  # TODO(shlens): Implement edge case to guarantee output size dimensions.
  # If size > value.shape, zero pad the result so that it always has shape
  # exactly size.
  with ops.name_scope(name, "random_crop", [value, size]) as name:
    value = ops.convert_to_tensor(value, name="value")
    size = ops.convert_to_tensor(size, dtype=dtypes.int32, name="size")
    shape = array_ops.shape(value)
    check = control_flow_ops.Assert(
        math_ops.reduce_all(shape >= size),
        ["Need value.shape >= size, got ", shape, size],
        summarize=1000)
    shape = control_flow_ops.with_dependencies([check], shape)
    limit = shape - size + 1
    offset = random_uniform(
        array_ops.shape(shape),
        dtype=size.dtype,
        maxval=size.dtype.max,
        seed=seed) % limit
    return array_ops.slice(value, offset, size, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:42,代碼來源:random_ops.py


注:本文中的tensorflow.python.ops.math_ops.reduce_all方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。