當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.reciprocal方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.reciprocal方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.reciprocal方法的具體用法?Python math_ops.reciprocal怎麽用?Python math_ops.reciprocal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.reciprocal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _AtanGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _AtanGrad(op, grad):
  """Returns grad * 1/ (1 + x^2)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    x = math_ops.conj(x)
    x2 = math_ops.square(x)
    one = constant_op.constant(1, dtype=grad.dtype)
    inv = math_ops.reciprocal(math_ops.add(one, x2))
    return grad * inv 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:11,代碼來源:math_grad.py

示例2: _IRFFTGradHelper

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _IRFFTGradHelper(rank, rfft_fn):
  """Returns a gradient function for an IRFFT of the provided rank."""
  # Can't happen because we don't register a gradient for IRFFT3D.
  assert rank in (1, 2), "Gradient for IRFFT3D is not implemented."

  def _Grad(op, grad):
    """A gradient function for IRFFT with the provided `rank` and `rfft_fn`."""
    # Generate a simple mask like [1.0, 2.0, ..., 2.0, 1.0] for even-length FFTs
    # and [1.0, 2.0, ..., 2.0] for odd-length FFTs. To reduce extra ops in the
    # graph we special-case the situation where the FFT length and last
    # dimension of the input are known at graph construction time.
    fft_length = op.inputs[1]
    is_odd = math_ops.mod(fft_length[-1], 2)
    input_last_dimension = array_ops.shape(op.inputs[0])[-1]
    mask = array_ops.concat(
        [[1.0], 2.0 * array_ops.ones([input_last_dimension - 2 + is_odd]),
         array_ops.ones([1 - is_odd])], 0)

    rsize = math_ops.reciprocal(math_ops.to_float(_FFTSizeForGrad(grad, rank)))

    # The gradient of IRFFT is the RFFT of the incoming gradient times a scaling
    # factor and a mask. The mask scales the gradient for the Hermitian
    # symmetric components of the RFFT by a factor of two, since these
    # components are de-duplicated in the RFFT.
    rfft = rfft_fn(grad, fft_length)
    return rfft * math_ops.cast(rsize * mask, dtypes.complex64), None

  return _Grad 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:spectral_grad.py

示例3: _LogGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _LogGrad(op, grad):
  """Returns grad * (1/x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    x = math_ops.conj(x)
    return grad * math_ops.reciprocal(x) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:math_grad.py

示例4: _Log1pGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _Log1pGrad(op, grad):
  """Returns grad * (1/(1 + x))."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    x = math_ops.conj(x)
    return grad * math_ops.reciprocal(1 + x) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:math_grad.py

示例5: _TanGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _TanGrad(op, grad):
  """Returns grad * 1/sec^2(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    x = math_ops.conj(x)
    secx = math_ops.reciprocal(math_ops.cos(x))
    secx2 = math_ops.square(secx)
    return grad * secx2 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:10,代碼來源:math_grad.py

示例6: _AsinGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _AsinGrad(op, grad):
  """Returns grad * 1/sqrt(1-x^2)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    x = math_ops.conj(x)
    x2 = math_ops.square(x)
    one = constant_op.constant(1, dtype=grad.dtype)
    den = math_ops.sqrt(math_ops.subtract(one, x2))
    inv = math_ops.reciprocal(den)
    return grad * inv 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:math_grad.py

示例7: _SelfAdjointEigV2Grad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
  """Gradient for SelfAdjointEigV2."""
  e = op.outputs[0]
  v = op.outputs[1]
  # a = op.inputs[0], which satisfies
  # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
  with ops.control_dependencies([grad_e.op, grad_v.op]):
    if grad_v is not None:
      # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
      # Notice that because of the term involving f, the gradient becomes
      # infinite (or NaN in practice) when eigenvalues are not unique.
      # Mathematically this should not be surprising, since for (k-fold)
      # degenerate eigenvalues, the corresponding eigenvectors are only defined
      # up to arbitrary rotation in a (k-dimensional) subspace.
      f = array_ops.matrix_set_diag(
          math_ops.reciprocal(
              array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
          array_ops.zeros_like(e))
      grad_a = math_ops.matmul(
          v,
          math_ops.matmul(
              array_ops.matrix_diag(grad_e) + f * math_ops.matmul(
                  v, grad_v, adjoint_a=True),
              v,
              adjoint_b=True))
    else:
      grad_a = math_ops.matmul(
          v, math_ops.matmul(
              array_ops.matrix_diag(grad_e), v, adjoint_b=True))
    # The forward op only depends on the lower triangular part of a, so here we
    # symmetrize and take the lower triangle
    grad_a = array_ops.matrix_band_part(
        grad_a + array_ops.matrix_transpose(grad_a), -1, 0)
    grad_a = array_ops.matrix_set_diag(grad_a,
                                       0.5 * array_ops.matrix_diag_part(grad_a))
    return grad_a 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:linalg_grad.py

示例8: normalize_moments

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def normalize_moments(counts, mean_ss, variance_ss, shift, name=None):
  """Calculate the mean and variance of based on the sufficient statistics.

  Args:
    counts: A `Tensor` containing a the total count of the data (one value).
    mean_ss: A `Tensor` containing the mean sufficient statistics: the (possibly
      shifted) sum of the elements to average over.
    variance_ss: A `Tensor` containing the variance sufficient statistics: the
      (possibly shifted) squared sum of the data to compute the variance over.
    shift: A `Tensor` containing the value by which the data is shifted for
      numerical stability, or `None` if no shift was performed.
    name: Name used to scope the operations that compute the moments.

  Returns:
    Two `Tensor` objects: `mean` and `variance`.
  """
  with ops.name_scope(name, "normalize", [counts, mean_ss, variance_ss, shift]):
    divisor = math_ops.reciprocal(counts, name="divisor")
    if shift is not None:
      shifted_mean = math_ops.multiply(mean_ss, divisor, name="shifted_mean")
      mean = math_ops.add(shifted_mean, shift, name="mean")
    else:  # no shift.
      shifted_mean = math_ops.multiply(mean_ss, divisor, name="mean")
      mean = shifted_mean
    variance = math_ops.subtract(math_ops.multiply(variance_ss, divisor),
                                 math_ops.square(shifted_mean),
                                 name="variance")
  return (mean, variance) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:nn_impl.py

示例9: _AcosGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _AcosGrad(op, grad):
  """Returns grad * -1/sqrt(1-x^2)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    x = math_ops.conj(x)
    x2 = math_ops.square(x)
    one = constant_op.constant(1, dtype=grad.dtype)
    den = math_ops.sqrt(math_ops.subtract(one, x2))
    inv = math_ops.reciprocal(den)
    return -grad * inv 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:12,代碼來源:math_grad.py

示例10: setUp

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def setUp(self):
    super(CoreUnaryOpsTest, self).setUp()

    self.ops = [
        ('abs', operator.abs, math_ops.abs, core.abs_function),
        ('neg', operator.neg, math_ops.negative, core.neg),
        # TODO(shoyer): add unary + to core TensorFlow
        ('pos', None, None, None),
        ('sign', None, math_ops.sign, core.sign),
        ('reciprocal', None, math_ops.reciprocal, core.reciprocal),
        ('square', None, math_ops.square, core.square),
        ('round', None, math_ops.round, core.round_function),
        ('sqrt', None, math_ops.sqrt, core.sqrt),
        ('rsqrt', None, math_ops.rsqrt, core.rsqrt),
        ('log', None, math_ops.log, core.log),
        ('exp', None, math_ops.exp, core.exp),
        ('log', None, math_ops.log, core.log),
        ('ceil', None, math_ops.ceil, core.ceil),
        ('floor', None, math_ops.floor, core.floor),
        ('cos', None, math_ops.cos, core.cos),
        ('sin', None, math_ops.sin, core.sin),
        ('tan', None, math_ops.tan, core.tan),
        ('acos', None, math_ops.acos, core.acos),
        ('asin', None, math_ops.asin, core.asin),
        ('atan', None, math_ops.atan, core.atan),
        ('lgamma', None, math_ops.lgamma, core.lgamma),
        ('digamma', None, math_ops.digamma, core.digamma),
        ('erf', None, math_ops.erf, core.erf),
        ('erfc', None, math_ops.erfc, core.erfc),
        ('lgamma', None, math_ops.lgamma, core.lgamma),
    ]
    total_size = np.prod([v.size for v in self.original_lt.axes.values()])
    self.test_lt = core.LabeledTensor(
        math_ops.cast(self.original_lt, dtypes.float32) / total_size,
        self.original_lt.axes) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:37,代碼來源:core_test.py

示例11: normalize_moments

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def normalize_moments(counts, mean_ss, variance_ss, shift, name=None):
  """Calculate the mean and variance of based on the sufficient statistics.

  Args:
    counts: A `Tensor` containing a the total count of the data (one value).
    mean_ss: A `Tensor` containing the mean sufficient statistics: the (possibly
      shifted) sum of the elements to average over.
    variance_ss: A `Tensor` containing the variance sufficient statistics: the
      (possibly shifted) squared sum of the data to compute the variance over.
    shift: A `Tensor` containing the value by which the data is shifted for
      numerical stability, or `None` if no shift was performed.
    name: Name used to scope the operations that compute the moments.

  Returns:
    Two `Tensor` objects: `mean` and `variance`.
  """
  with tf.variable_scope(name, "normalize", [counts, mean_ss, variance_ss, shift]):
    divisor = math_ops.reciprocal(counts, name="divisor")
    if shift is not None:
      shifted_mean = math_ops.multiply(mean_ss, divisor, name="shifted_mean")
      mean = math_ops.add(shifted_mean, shift, name="mean")
    else:  # no shift.
      shifted_mean = math_ops.multiply(mean_ss, divisor, name="mean")
      mean = shifted_mean
    variance = math_ops.subtract(math_ops.multiply(variance_ss, divisor),
                                 math_ops.square(shifted_mean),
                                 name="variance")
  return (mean, variance) 
開發者ID:gustavla,項目名稱:self-supervision,代碼行數:30,代碼來源:extra.py

示例12: _LogGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _LogGrad(op, grad):
  """Returns grad * (1/x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.reciprocal(x) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:8,代碼來源:math_grad.py

示例13: _Log1pGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _Log1pGrad(op, grad):
  """Returns grad * (1/(1 + x))."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.reciprocal(1 + x) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:8,代碼來源:math_grad.py

示例14: _AtanhGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _AtanhGrad(op, grad):
  """Returns grad * 1/ (1 - x^2)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    x2 = math_ops.square(x)
    one = constant_op.constant(1, dtype=grad.dtype)
    inv = math_ops.reciprocal(math_ops.subtract(one, x2))
    return grad * inv 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:11,代碼來源:math_grad.py

示例15: _TanGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import reciprocal [as 別名]
def _TanGrad(op, grad):
  """Returns grad * 1/sec^2(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    secx = math_ops.reciprocal(math_ops.cos(x))
    secx2 = math_ops.square(secx)
    return grad * secx2 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:10,代碼來源:math_grad.py


注:本文中的tensorflow.python.ops.math_ops.reciprocal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。