本文整理匯總了Python中tensorflow.python.ops.math_ops.range方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.range方法的具體用法?Python math_ops.range怎麽用?Python math_ops.range使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.range方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _transpose_batch_time
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def _transpose_batch_time(x):
"""Transpose the batch and time dimensions of a Tensor.
Retains as much of the static shape information as possible.
Args:
x: A tensor of rank 2 or higher.
Returns:
x transposed along the first two dimensions.
Raises:
ValueError: if `x` is rank 1 or lower.
"""
x_static_shape = x.get_shape()
if x_static_shape.ndims is not None and x_static_shape.ndims < 2:
raise ValueError(
"Expected input tensor %s to have rank at least 2, but saw shape: %s" %
(x, x_static_shape))
x_rank = array_ops.rank(x)
x_t = array_ops.transpose(
x, array_ops.concat(
([1, 0], math_ops.range(2, x_rank)), axis=0))
x_t.set_shape(
tensor_shape.TensorShape([
x_static_shape[1].value, x_static_shape[0].value
]).concatenate(x_static_shape[2:]))
return x_t
示例2: unstack
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def unstack(self, value, name=None):
"""Unstack the values of a `Tensor` in the TensorArray.
If input value shapes have rank-`R`, then the output TensorArray will
contain elements whose shapes are rank-`(R-1)`.
Args:
value: (N+1)-D. Tensor of type `dtype`. The Tensor to unstack.
name: A name for the operation (optional).
Returns:
A new TensorArray object with flow that ensures the unstack occurs.
Use this object all for subsequent operations.
Raises:
ValueError: if the shape inference fails.
"""
with ops.name_scope(name, "TensorArrayUnstack", [self._handle, value]):
num_elements = array_ops.shape(value)[0]
return self.scatter(
indices=math_ops.range(0, num_elements), value=value, name=name)
示例3: _TileGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def _TileGrad(op, grad):
"""Sum reduces grad along the tiled dimensions."""
assert isinstance(grad, ops.Tensor)
input_shape = array_ops.shape(op.inputs[0])
# We interleave multiples and input_shape to get split_shape,
# reshape grad to split_shape, and reduce along all even
# dimensions (the tiled dimensions) to get the result
# with shape input_shape. For example
# input_shape = [20, 30, 40]
# multiples = [2, 3, 4]
# split_shape = [2, 20, 3, 30, 4, 40]
# axes = [0, 2, 4]
split_shape = array_ops.reshape(
array_ops.transpose(array_ops.stack([op.inputs[1], input_shape])), [-1])
axes = math_ops.range(0, array_ops.size(split_shape), 2)
input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes)
# Fix shape inference
input_grad.set_shape(op.inputs[0].get_shape())
return [input_grad, None]
示例4: _event_dims_tensor
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def _event_dims_tensor(self, sample):
"""Return a 1D `int32` tensor: `range(rank(sample))[-event_ndims:]`."""
if self.event_ndims is None:
raise ValueError("Jacobian cannot be computed with unknown event_ndims")
static_event_ndims = tensor_util.constant_value(self.event_ndims)
static_rank = sample.get_shape().ndims
if static_event_ndims is not None and static_rank is not None:
return ops.convert_to_tensor(
static_rank + np.arange(-static_event_ndims, 0).astype(np.int32))
if static_event_ndims is not None:
event_range = np.arange(-static_event_ndims, 0).astype(np.int32)
else:
event_range = math_ops.range(-self.event_ndims, 0, dtype=dtypes.int32)
if static_rank is not None:
return event_range + static_rank
else:
return event_range + array_ops.rank(sample)
示例5: _reduce_join_reduction_dims
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def _reduce_join_reduction_dims(x, axis, reduction_indices):
"""Returns range(rank(x) - 1, 0, -1) if reduction_indices is None."""
# TODO(aselle): Remove this after deprecation
if reduction_indices is not None:
if axis is not None:
raise ValueError("Can't specify both 'axis' and 'reduction_indices'.")
axis = reduction_indices
if axis is not None:
return axis
else:
# Fast path: avoid creating Rank and Range ops if ndims is known.
if isinstance(x, ops.Tensor) and x.get_shape().ndims is not None:
return constant_op.constant(
np.arange(x.get_shape().ndims - 1, -1, -1), dtype=dtypes.int32)
# Otherwise, we rely on Range and Rank to do the right thing at run-time.
return math_ops.range(array_ops.rank(x) - 1, -1, -1)
示例6: _BiasAddGradV1
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def _BiasAddGradV1(unused_bias_op, received_grad):
"""Return the gradients for the 2 inputs of bias_op.
The first input of unused_bias_op is the tensor t, and its gradient is
just the gradient the unused_bias_op received.
The second input of unused_bias_op is the bias vector which has one fewer
dimension than "received_grad" (the batch dimension.) Its gradient is the
received gradient Summed on the batch dimension, which is the first dimension.
Args:
unused_bias_op: The BiasOp for which we need to generate gradients.
received_grad: Tensor. The gradients passed to the BiasOp.
Returns:
Two tensors, the first one for the "tensor" input of the BiasOp,
the second one for the "bias" input of the BiasOp.
"""
reduction_dim_tensor = math_ops.range(array_ops.rank(received_grad) - 1)
return (received_grad, math_ops.reduce_sum(received_grad,
reduction_dim_tensor))
示例7: count_params
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def count_params(x):
"""Returns the number of scalars in a Keras variable.
Arguments:
x: Keras variable.
Returns:
Integer, the number of scalars in `x`.
Example:
```python
>>> kvar = K.zeros((2,3))
>>> K.count_params(kvar)
6
>>> K.eval(kvar)
array([[ 0., 0., 0.],
[ 0., 0., 0.]], dtype=float32)
```
"""
shape = x.get_shape()
return np.prod([shape[i]._value for i in range(len(shape))])
示例8: _lengths_to_masks
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def _lengths_to_masks(lengths, max_length):
"""Creates a binary matrix that can be used to mask away padding.
Args:
lengths: A vector of integers representing lengths.
max_length: An integer indicating the maximum length. All values in
lengths should be less than max_length.
Returns:
masks: Masks that can be used to get rid of padding.
"""
tiled_ranges = array_ops.tile(
array_ops.expand_dims(math_ops.range(max_length), 0),
[array_ops.shape(lengths)[0], 1])
lengths = array_ops.expand_dims(lengths, 1)
masks = math_ops.to_float(
math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
return masks
示例9: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def __init__(self,
key_dtype,
value_dtype,
default_value,
empty_key,
num_shards=1,
name='ShardedMutableHashTable'):
with ops.name_scope(name, 'sharded_mutable_hash_table') as scope:
super(ShardedMutableDenseHashTable, self).__init__(key_dtype,
value_dtype, scope)
table_shards = []
for i in range(num_shards):
table_shards.append(
lookup.MutableDenseHashTable(
key_dtype=key_dtype,
value_dtype=value_dtype,
default_value=default_value,
empty_key=empty_key,
name='%s-%d-of-%d' % (name, i + 1, num_shards)))
self._table_shards = table_shards
# TODO(andreasst): add a value_shape() method to LookupInterface
# pylint: disable=protected-access
self._value_shape = self._table_shards[0]._value_shape
# pylint: enable=protected-access
示例10: insert
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def insert(self, keys, values, name=None):
self._check_keys(keys)
num_shards = self._num_shards
if num_shards == 1:
return self._table_shards[0].insert(keys, values, name=name)
shard_indices = self._shard_indices(keys)
# TODO(andreasst): support 'keys' that are not vectors
key_shards = data_flow_ops.dynamic_partition(keys, shard_indices,
num_shards)
value_shards = data_flow_ops.dynamic_partition(values, shard_indices,
num_shards)
return_values = [
self._table_shards[i].insert(key_shards[i], value_shards[i], name=name)
for i in range(num_shards)
]
return control_flow_ops.group(*return_values)
示例11: _mean
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def _mean(self):
with ops.control_dependencies(self._assertions):
distribution_means = [d.mean() for d in self.components]
cat_probs = self._cat_probs(log_probs=False)
# This was checked to not be None at construction time.
static_event_rank = self.event_shape.ndims
# Expand the rank of x up to static_event_rank times so that
# broadcasting works correctly.
def expand(x):
expanded_x = x
for _ in range(static_event_rank):
expanded_x = array_ops.expand_dims(expanded_x, -1)
return expanded_x
cat_probs = [expand(c_p) for c_p in cat_probs]
partial_means = [
c_p * m for (c_p, m) in zip(cat_probs, distribution_means)
]
# These should all be the same shape by virtue of matching
# batch_shape and event_shape.
return math_ops.add_n(partial_means)
示例12: unstack
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def unstack(self, value, name=None):
"""Unstack the values of a `Tensor` in the TensorArray.
If input value shapes have rank-`R`, then the output TensorArray will
contain elements whose shapes are rank-`(R-1)`.
Args:
value: (N+1)-D. Tensor of type `dtype`. The Tensor to unstack.
name: A name for the operation (optional).
Returns:
A new TensorArray object with flow that ensures the unstack occurs.
Use this object all for subsequent operations.
Raises:
ValueError: if the shape inference fails.
"""
with ops.name_scope(name, "TensorArrayUnstack", [self._handle, value]):
num_elements = array_ops.shape(value)[0]
return self.scatter(
indices=math_ops.range(0, num_elements), value=value, name=name)
示例13: _transpose_batch_time
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def _transpose_batch_time(x):
"""Transpose the batch and time dimensions of a Tensor.
Retains as much of the static shape information as possible.
Args:
x: A tensor of rank 2 or higher.
Returns:
x transposed along the first two dimensions.
Raises:
ValueError: if `x` is rank 1 or lower.
"""
x_static_shape = x.get_shape()
if x_static_shape.ndims is not None and x_static_shape.ndims < 2:
raise ValueError(
"Expected input tensor %s to have rank at least 2, but saw shape: %s" %
(x, x_static_shape))
x_rank = array_ops.rank(x)
x_t = array_ops.transpose(
x, array_ops.concat(
([1, 0], math_ops.range(2, x_rank)), axis=0))
x_t.set_shape(
tensor_shape.TensorShape([
x_static_shape[1].value, x_static_shape[0].value
]).concatenate(x_static_shape[2:]))
return x_t
示例14: _DynamicPartitionGrads
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def _DynamicPartitionGrads(op, *grads):
"""Gradients for DynamicPartition."""
data = op.inputs[0]
indices = op.inputs[1]
num_partitions = op.get_attr("num_partitions")
prefix_shape = array_ops.shape(indices)
original_indices = array_ops.reshape(
math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape)
partitioned_indices = data_flow_ops.dynamic_partition(
original_indices, indices, num_partitions)
reconstructed = data_flow_ops.dynamic_stitch(partitioned_indices, grads)
reconstructed = array_ops.reshape(reconstructed, array_ops.shape(data))
return [reconstructed, None]
示例15: clip_by_average_norm
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import range [as 別名]
def clip_by_average_norm(t, clip_norm, name=None):
"""Clips tensor values to a maximum average L2-norm.
Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
normalizes `t` so that its average L2-norm is less than or equal to
`clip_norm`. Specifically, if the average L2-norm is already less than or
equal to `clip_norm`, then `t` is not modified. If the average L2-norm is
greater than `clip_norm`, then this operation returns a tensor of the same
type and shape as `t` with its values set to:
`t * clip_norm / l2norm_avg(t)`
In this case, the average L2-norm of the output tensor is `clip_norm`.
This operation is typically used to clip gradients before applying them with
an optimizer.
Args:
t: A `Tensor`.
clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
name: A name for the operation (optional).
Returns:
A clipped `Tensor`.
"""
with ops.name_scope(name, "clip_by_average_norm", [t, clip_norm]) as name:
t = ops.convert_to_tensor(t, name="t")
# Calculate L2-norm per element, clip elements by ratio of clip_norm to
# L2-norm per element
n_element = math_ops.cast(array_ops.size(t), dtypes.float32)
l2norm_inv = math_ops.rsqrt(
math_ops.reduce_sum(t * t, math_ops.range(array_ops.rank(t))))
tclip = array_ops.identity(
t * clip_norm * math_ops.minimum(
l2norm_inv * n_element, constant_op.constant(1.0) / clip_norm),
name=name)
return tclip