當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.pow方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.pow方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.pow方法的具體用法?Python math_ops.pow怎麽用?Python math_ops.pow使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.pow方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _PowGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = array_ops.where(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:math_grad.py

示例2: _PowGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = math_ops.select(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = math_ops.select(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(
      math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:math_grad.py

示例3: _discounted_cumulative_gain

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def _discounted_cumulative_gain(labels, weights=None):
    """Computes discounted cumulative gain (DCG).

    DCG =  SUM((2^label -1) / (log(1+rank))).

    Args:
     labels: The relevance `Tensor` of shape [batch_size, list_size]. For the
       ideal ranking, the examples are sorted by relevance in reverse order.
      weights: A `Tensor` of the same shape as labels or [batch_size, 1]. The
        former case is per-example and the latter case is per-list.

    Returns:
      A `Tensor` as the weighted discounted cumulative gain per-list. The
      tensor shape is [batch_size, 1].
    """
    list_size = array_ops.shape(labels)[1]
    position = math_ops.to_float(math_ops.range(1, list_size + 1))
    denominator = math_ops.log(position + 1)
    numerator = math_ops.pow(2.0, math_ops.to_float(labels)) - 1.0
    return math_ops.reduce_sum(
        weights * numerator / denominator, 1, keepdims=True) 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:23,代碼來源:metrics.py

示例4: focal_loss

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def focal_loss(labels, logits, gamma=2.0):
    r"""
    Multi-class focal loss implementation: https://arxiv.org/abs/1708.02002
    :param labels: [batch_size, ] - Tensor of the correct class ids
    :param logits: [batch_size, num_classes] - Unscaled logits
    :param gamma: focal loss weight
    :return: [batch_size, ] - Tensor of average costs for each batch element
    """

    num_classes = array_ops.shape(logits)[1]
    onehot_labels = array_ops.one_hot(labels, num_classes, dtype=logits.dtype)

    p = nn_ops.softmax(logits)
    p = clip_ops.clip_by_value(p, 1e-7, 1.0 - 1e-7)

    f_loss = - onehot_labels * math_ops.pow(1.0 - p, gamma) * math_ops.log(p) \
             - (1 - onehot_labels) * math_ops.pow(p, gamma) * math_ops.log(1.0 - p)

    cost = math_ops.reduce_sum(f_loss, axis=1)
    return cost 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:22,代碼來源:devel.py

示例5: LRSchedule

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def LRSchedule(global_step, d_model, warmup_steps=4000):
	if global_step is None:
		raise ValueError("global_step is required for learning_rate_schedule.")

	def deal_lr(global_step, d_model, warmup_steps):
		d_model = ops.convert_to_tensor(d_model, dtype=tf.float32)
		dtype = d_model.dtype
		warmup_steps = math_ops.cast(warmup_steps, dtype)

		global_step_recomp = math_ops.cast(global_step, dtype)
		arg1 = math_ops.rsqrt(global_step_recomp)
		arg2 = math_ops.multiply(global_step_recomp, math_ops.pow(warmup_steps, -1.5))

		return math_ops.multiply(math_ops.rsqrt(d_model), math_ops.minimum(arg1, arg2))

	return functools.partial(deal_lr, global_step, d_model, warmup_steps) 
開發者ID:EternalFeather,項目名稱:Transformer-in-generating-dialogue,代碼行數:18,代碼來源:utils.py

示例6: get_drop_fraction

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def get_drop_fraction(self, global_step, is_mask_update_iter_op):
    """Returns a constant or annealing drop_fraction op."""
    if self._drop_fraction_anneal == 'constant':
      drop_frac = self._drop_fraction_initial_value
    elif self._drop_fraction_anneal == 'cosine':
      decay_steps = self._end_step - self._begin_step
      drop_frac = learning_rate_decay.cosine_decay(
          self._drop_fraction_initial_value, global_step, decay_steps,
          name='cosine_drop_fraction')
    elif self._drop_fraction_anneal.startswith('exponential'):
      exponent = extract_number(self._drop_fraction_anneal)
      div_dtype = self._drop_fraction_initial_value.dtype
      power = math_ops.divide(
          math_ops.cast(global_step - self._begin_step, div_dtype),
          math_ops.cast(self._end_step - self._begin_step, div_dtype),
          )
      drop_frac = math_ops.multiply(
          self._drop_fraction_initial_value,
          math_ops.pow(1 - power, exponent),
          name='%s_drop_fraction' % self._drop_fraction_anneal)
    else:
      raise ValueError('drop_fraction_anneal: %s is not valid' %
                       self._drop_fraction_anneal)
    return array_ops.where(is_mask_update_iter_op, drop_frac,
                           array_ops.zeros_like(drop_frac)) 
開發者ID:google-research,項目名稱:rigl,代碼行數:27,代碼來源:sparse_optimizers.py

示例7: pow

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def pow(x, a):
  """Element-wise exponentiation.

  Arguments:
      x: Tensor or variable.
      a: Python integer.

  Returns:
      A tensor.
  """
  return math_ops.pow(x, a) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:13,代碼來源:backend.py

示例8: setUp

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def setUp(self):
    super(CoreBinaryOpsTest, self).setUp()

    self.x_probs_broadcast_tensor = array_ops.reshape(
        self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])

    self.channel_probs_broadcast_tensor = array_ops.reshape(
        self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])

    # == and != are not element-wise for tf.Tensor, so they shouldn't be
    # elementwise for LabeledTensor, either.
    self.ops = [
        ('add', operator.add, math_ops.add, core.add),
        ('sub', operator.sub, math_ops.subtract, core.sub),
        ('mul', operator.mul, math_ops.multiply, core.mul),
        ('div', operator.truediv, math_ops.div, core.div),
        ('mod', operator.mod, math_ops.mod, core.mod),
        ('pow', operator.pow, math_ops.pow, core.pow_function),
        ('equal', None, math_ops.equal, core.equal),
        ('less', operator.lt, math_ops.less, core.less),
        ('less_equal', operator.le, math_ops.less_equal, core.less_equal),
        ('not_equal', None, math_ops.not_equal, core.not_equal),
        ('greater', operator.gt, math_ops.greater, core.greater),
        ('greater_equal', operator.ge, math_ops.greater_equal,
         core.greater_equal),
    ]
    self.test_lt_1 = self.x_probs_lt
    self.test_lt_2 = self.channel_probs_lt
    self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
    self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
    self.broadcast_axes = [self.a0, self.a1, self.a3] 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:33,代碼來源:core_test.py

示例9: dropout_selu

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def dropout_selu(x, rate, alpha= -1.7580993408473766, fixedPointMean=0.0, fixedPointVar=1.0,
                 noise_shape=None, seed=None, name=None, training=False):
    """Dropout to a value with rescaling."""

    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the "
                                             "range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        alpha.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        if tensor_util.constant_value(keep_prob) == 1:
            return x

        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1-binary_tensor)

        a = math_ops.sqrt(fixedPointVar / (keep_prob *((1-keep_prob) * math_ops.pow(alpha-fixedPointMean,2) + fixedPointVar)))

        b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training,
            lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
            lambda: array_ops.identity(x)) 
開發者ID:yyht,項目名稱:BERT,代碼行數:38,代碼來源:general.py

示例10: dropout_selu

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def dropout_selu(x, rate, alpha=-1.7580993408473766, fixedPointMean=0.0, fixedPointVar=1.0,
                 noise_shape=None, seed=None, name=None, training=False):
    """Dropout to a value with rescaling."""

    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the "
                                             "range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        alpha.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        if tensor_util.constant_value(keep_prob) == 1:
            return x

        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1-binary_tensor)

        a = math_ops.sqrt(fixedPointVar / (keep_prob *((1-keep_prob) * math_ops.pow(alpha-fixedPointMean,2) + fixedPointVar)))

        b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training,
            lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
            lambda: array_ops.identity(x)) 
開發者ID:uclnlp,項目名稱:inferbeddings,代碼行數:38,代碼來源:basic.py

示例11: _phi

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def _phi(r, order):
  """Coordinate-wise nonlinearity used to define the order of the interpolation.

  See https://en.wikipedia.org/wiki/Polyharmonic_spline for the definition.

  Args:
    r: input op
    order: interpolation order

  Returns:
    phi_k evaluated coordinate-wise on r, for k = r
  """

  # using EPSILON prevents log(0), sqrt0), etc.
  # sqrt(0) is well-defined, but its gradient is not
  with ops.name_scope('phi'):
    if order == 1:
      r = math_ops.maximum(r, EPSILON)
      r = math_ops.sqrt(r)
      return r
    elif order == 2:
      return 0.5 * r * math_ops.log(math_ops.maximum(r, EPSILON))
    elif order == 4:
      return 0.5 * math_ops.square(r) * math_ops.log(
          math_ops.maximum(r, EPSILON))
    elif order % 2 == 0:
      r = math_ops.maximum(r, EPSILON)
      return 0.5 * math_ops.pow(r, 0.5 * order) * math_ops.log(r)
    else:
      r = math_ops.maximum(r, EPSILON)
      return math_ops.pow(r, 0.5 * order) 
開發者ID:seasonSH,項目名稱:WarpGAN,代碼行數:33,代碼來源:interpolate_spline.py

示例12: _prob

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def _prob(self, x):
    y = (x - self.mu) / self.sigma
    half_df = 0.5 * self.df
    return (math_ops.exp(math_ops.lgamma(0.5 + half_df) -
                         math_ops.lgamma(half_df)) /
            (math_ops.sqrt(self.df) * math.sqrt(math.pi) * self.sigma) *
            math_ops.pow(1. + math_ops.square(y) / self.df, -(0.5 + half_df))) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:student_t.py

示例13: expected_reciprocal_rank

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def expected_reciprocal_rank(
        labels, predictions, weights=None, topn=None, name=None):
    """Computes expected reciprocal rank (ERR).

    Args:
      labels: A `Tensor` of the same shape as `predictions`. A value >= 1 means a
        relevant example.
      predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
        the ranking score of the corresponding example.
      weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
        former case is per-example and the latter case is per-list.
      topn: A cutoff for how many examples to consider for this metric.
      name: A string used as the name for this metric.

    Returns:
      A metric for the weighted expected reciprocal rank of the batch.
    """
    with ops.name_scope(name, 'expected_reciprocal_rank',
                        (labels, predictions, weights)):
        labels, predictions, weights, topn = _prepare_and_validate_params(
            labels, predictions, weights, topn)
        sorted_labels, sorted_weights = utils.sort_by_scores(
            predictions, [labels, weights], topn=topn)
        _, list_size = array_ops.unstack(array_ops.shape(sorted_labels))

        relevance = (math_ops.pow(2.0, sorted_labels) - 1) / \
            math_ops.pow(2.0, RankingMetricKey.MAX_LABEL)
        non_rel = tf.math.cumprod(1.0 - relevance, axis=1) / (1.0 - relevance)
        reciprocal_rank = 1.0 / \
            math_ops.to_float(math_ops.range(1, list_size + 1))
        mask = math_ops.to_float(math_ops.greater_equal(
            reciprocal_rank, 1.0 / (topn + 1)))
        reciprocal_rank = reciprocal_rank * mask
        # ERR has a shape of [batch_size, 1]
        err = math_ops.reduce_sum(
            relevance * non_rel * reciprocal_rank * sorted_weights, axis=1, keepdims=True)
        return math_ops.reduce_mean(err) 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:39,代碼來源:metrics.py

示例14: normalized_discounted_cumulative_gain

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def normalized_discounted_cumulative_gain(labels,
                                          predictions,
                                          weights=None,
                                          topn=None,
                                          name=None):
    """Computes normalized discounted cumulative gain (NDCG).

    Args:
      labels: A `Tensor` of the same shape as `predictions`.
      predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
        the ranking score of the corresponding example.
      weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
        former case is per-example and the latter case is per-list.
      topn: A cutoff for how many examples to consider for this metric.
      name: A string used as the name for this metric.

    Returns:
      A metric for the weighted normalized discounted cumulative gain of the
      batch.
    """
    with ops.name_scope(name, 'normalized_discounted_cumulative_gain',
                        (labels, predictions, weights)):
        labels, predictions, weights, topn = _prepare_and_validate_params(
            labels, predictions, weights, topn)
        sorted_labels, sorted_weights = utils.sort_by_scores(
            predictions, [labels, weights], topn=topn)
        dcg = _discounted_cumulative_gain(sorted_labels, sorted_weights)
        # Sorting over the weighted labels to get ideal ranking.
        ideal_sorted_labels, ideal_sorted_weights = utils.sort_by_scores(
            weights * labels, [labels, weights], topn=topn)
        ideal_dcg = _discounted_cumulative_gain(ideal_sorted_labels,
                                                ideal_sorted_weights)
        per_list_ndcg = _safe_div(dcg, ideal_dcg)
        per_list_weights = _per_example_weights_to_per_list_weights(
            weights=weights,
            relevance=math_ops.pow(2.0, math_ops.to_float(labels)) - 1.0)
        return math_ops.reduce_mean(per_list_ndcg * per_list_weights) 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:39,代碼來源:metrics.py

示例15: discounted_cumulative_gain

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import pow [as 別名]
def discounted_cumulative_gain(labels,
                               predictions,
                               weights=None,
                               topn=None,
                               name=None):
    """Computes discounted cumulative gain (DCG).

    Args:
      labels: A `Tensor` of the same shape as `predictions`.
      predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
        the ranking score of the corresponding example.
      weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
        former case is per-example and the latter case is per-list.
      topn: A cutoff for how many examples to consider for this metric.
      name: A string used as the name for this metric.

    Returns:
      A metric for the weighted discounted cumulative gain of the batch.
    """
    with ops.name_scope(name, 'discounted_cumulative_gain',
                        (labels, predictions, weights)):
        labels, predictions, weights, topn = _prepare_and_validate_params(
            labels, predictions, weights, topn)
        sorted_labels, sorted_weights = utils.sort_by_scores(
            predictions, [labels, weights], topn=topn)
        dcg = _discounted_cumulative_gain(sorted_labels,
                                          sorted_weights) * math_ops.log1p(1.0)
        per_list_weights = _per_example_weights_to_per_list_weights(
            weights=weights,
            relevance=math_ops.pow(2.0, math_ops.to_float(labels)) - 1.0)
        return math_ops.reduce_mean(
            _safe_div(dcg, per_list_weights) * per_list_weights) 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:34,代碼來源:metrics.py


注:本文中的tensorflow.python.ops.math_ops.pow方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。