當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.polygamma方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.polygamma方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.polygamma方法的具體用法?Python math_ops.polygamma怎麽用?Python math_ops.polygamma使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.polygamma方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _PolygammaGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import polygamma [as 別名]
def _PolygammaGrad(op, grad):
  """Returns gradient of psi(n, x) with respect to n and x."""
  # TODO(tillahoffmann): Add derivative with respect to n
  n = op.inputs[0]
  x = op.inputs[1]
  # Broadcast gradients
  sn = array_ops.shape(n)
  sx = array_ops.shape(x)
  unused_rn, rx = gen_array_ops._broadcast_gradient_args(sn, sx)
  # Evaluate gradient
  with ops.control_dependencies([grad.op]):
    n = math_ops.conj(n)
    x = math_ops.conj(x)
    partial_x = math_ops.polygamma(n + 1, x)
    # TODO(b/36815900): Mark None return values as NotImplemented
    return (None,
            array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:math_grad.py

示例2: _PolygammaGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import polygamma [as 別名]
def _PolygammaGrad(op, grad):
  """Returns gradient of psi(n, x) with respect to n and x."""
  # TODO(tillahoffmann): Add derivative with respect to n
  n = op.inputs[0]
  x = op.inputs[1]
  # Broadcast gradients
  sn = array_ops.shape(n)
  sx = array_ops.shape(x)
  unused_rn, rx = gen_array_ops._broadcast_gradient_args(sn, sx)
  # Evaluate gradient
  with ops.control_dependencies([grad.op]):
    n = math_ops.conj(n)
    x = math_ops.conj(x)
    partial_x = math_ops.polygamma(n + 1, x)
    return (None,
            array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:math_grad.py

示例3: setUp

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import polygamma [as 別名]
def setUp(self):
    super(FloatBinaryOpsTest, self).setUp()

    self.ops = [
        ('igamma', None, math_ops.igamma, core.igamma),
        ('igammac', None, math_ops.igammac, core.igammac),
        ('zeta', None, math_ops.zeta, core.zeta),
        ('polygamma', None, math_ops.polygamma, core.polygamma),
        ('maximum', None, math_ops.maximum, core.maximum),
        ('minimum', None, math_ops.minimum, core.minimum),
        ('squared_difference', None, math_ops.squared_difference,
         core.squared_difference),
    ]
    total_size = np.prod([v.size for v in self.original_lt.axes.values()])
    test_lt = core.LabeledTensor(
        math_ops.cast(self.original_lt, dtypes.float32) / total_size,
        self.original_lt.axes)
    self.test_lt_1 = test_lt
    self.test_lt_2 = 1.0 - test_lt
    self.test_lt_1_broadcast = self.test_lt_1.tensor
    self.test_lt_2_broadcast = self.test_lt_2.tensor
    self.broadcast_axes = self.test_lt_1.axes 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:24,代碼來源:core_test.py

示例4: _PolygammaGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import polygamma [as 別名]
def _PolygammaGrad(op, grad):
  """Returns gradient of psi(n, x) with respect to n and x."""
  # TODO(tillahoffmann): Add derivative with respect to n
  n = op.inputs[0]
  x = op.inputs[1]
  # Broadcast gradients
  sn = array_ops.shape(n)
  sx = array_ops.shape(x)
  # pylint: disable=protected-access
  unused_rn, rx = gen_array_ops._broadcast_gradient_args(sn, sx)
  # pylint: enable=protected-access
  # Evaluate gradient
  with ops.control_dependencies([grad]):
    n = math_ops.conj(n)
    x = math_ops.conj(x)
    partial_x = math_ops.polygamma(n + 1, x)
    # TODO(b/36815900): Mark None return values as NotImplemented
    return (None,
            array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx)) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:21,代碼來源:math_grad.py

示例5: _DigammaGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import polygamma [as 別名]
def _DigammaGrad(op, grad):
  """Compute gradient of the digamma function with respect to its argument."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    x = math_ops.conj(x)
    return grad * math_ops.polygamma(array_ops.constant(1, dtype=x.dtype), x) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:math_grad.py

示例6: _DigammaGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import polygamma [as 別名]
def _DigammaGrad(op, grad):
  """Compute gradient of the digamma function with respect to its argument."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.polygamma(array_ops.constant(1, dtype=x.dtype), x) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:8,代碼來源:math_grad.py


注:本文中的tensorflow.python.ops.math_ops.polygamma方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。