本文整理匯總了Python中tensorflow.python.ops.math_ops.not_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.not_equal方法的具體用法?Python math_ops.not_equal怎麽用?Python math_ops.not_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.not_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: dense_to_sparse
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
"""Converts a dense tensor into a sparse tensor.
An example use would be to convert dense labels to sparse ones
so that they can be fed to the ctc_loss.
Args:
tensor: An `int` `Tensor` to be converted to a `Sparse`.
eos_token: An integer. It is part of the target label that signifies the
end of a sentence.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
"""
with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
tensor = ops.convert_to_tensor(tensor)
indices = array_ops.where(
math_ops.not_equal(tensor, constant_op.constant(eos_token,
tensor.dtype)))
values = array_ops.gather_nd(tensor, indices)
shape = array_ops.shape(tensor, out_type=dtypes.int64)
outputs = sparse_tensor.SparseTensor(indices, values, shape)
return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
示例2: _PowGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def _PowGrad(op, grad):
"""Returns grad * (y*x^(y-1), z*log(x))."""
x = op.inputs[0]
y = op.inputs[1]
z = op.outputs[0]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
x = math_ops.conj(x)
y = math_ops.conj(y)
z = math_ops.conj(z)
gx = array_ops.reshape(
math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
# Avoid false singularity at x = 0
if x.dtype.is_complex:
# real(x) < 0 is fine for the complex case
log_x = array_ops.where(
math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
else:
# There's no sensible real value to return if x < 0, so return 0
log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
return gx, gy
示例3: dense_to_sparse_tensor
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def dense_to_sparse_tensor(dense_tensor, ignore_value=None):
"""Converts dense `Tensor` to `SparseTensor`, dropping `ignore_value` cells.
Args:
dense_tensor: A `Tensor`.
ignore_value: Entries in `dense_tensor` equal to this value will be
absent from the return `SparseTensor`. If `None`, default value of
`dense_tensor` dtype will be used (e.g. '' for `str`, 0 for `int`).
Returns:
A `SparseTensor` with the same shape as `dense_tensor`.
Raises:
ValueError: when `dense_tensor`'s rank is `None`.
"""
with ops.name_scope("DenseToSparseTensor"):
dense_tensor = ops.convert_to_tensor(dense_tensor)
ignore_value = _ignore_value_tensor(dense_tensor.dtype, ignore_value)
indices = array_ops.where(
math_ops.not_equal(dense_tensor, ignore_value), name="indices")
return sparse_tensor.SparseTensor(
indices=indices,
values=array_ops.gather_nd(dense_tensor, indices, name="values"),
dense_shape=array_ops.shape(
dense_tensor, out_type=dtypes.int64, name="dense_shape"))
示例4: _PowGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def _PowGrad(op, grad):
"""Returns grad * (y*x^(y-1), z*log(x))."""
x = op.inputs[0]
y = op.inputs[1]
z = op.outputs[0]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
x = math_ops.conj(x)
y = math_ops.conj(y)
z = math_ops.conj(z)
gx = array_ops.reshape(
math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
# Avoid false singularity at x = 0
if x.dtype.is_complex:
# real(x) < 0 is fine for the complex case
log_x = math_ops.select(
math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
else:
# There's no sensible real value to return if x < 0, so return 0
log_x = math_ops.select(x > 0, math_ops.log(x), array_ops.zeros_like(x))
gy = array_ops.reshape(
math_ops.reduce_sum(grad * z * log_x, ry), sy)
return gx, gy
示例5: not_equal
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def not_equal(x, y):
"""Element-wise inequality between two tensors.
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A bool tensor.
"""
return math_ops.not_equal(x, y)
示例6: _check_multiple_of
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def _check_multiple_of(value, multiple_of):
"""Checks that value `value` is a non-zero multiple of `multiple_of`.
Args:
value: an int32 scalar Tensor.
multiple_of: an int or int32 scalar Tensor.
Returns:
new_value: an int32 scalar Tensor matching `value`, but which includes an
assertion that `value` is a multiple of `multiple_of`.
"""
assert isinstance(value, ops.Tensor)
with ops.control_dependencies([
control_flow_ops.Assert(
math_ops.logical_and(
math_ops.equal(math_ops.mod(value, multiple_of), 0),
math_ops.not_equal(value, 0)), [
string_ops.string_join([
"Tensor %s should be a multiple of: " % value.name,
string_ops.as_string(multiple_of), ", but saw value: ",
string_ops.as_string(value),
". Consider setting pad=True."
])
])
]):
new_value = array_ops.identity(value, name="multiple_of_checked")
return new_value
示例7: setUp
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def setUp(self):
super(CoreBinaryOpsTest, self).setUp()
self.x_probs_broadcast_tensor = array_ops.reshape(
self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])
self.channel_probs_broadcast_tensor = array_ops.reshape(
self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])
# == and != are not element-wise for tf.Tensor, so they shouldn't be
# elementwise for LabeledTensor, either.
self.ops = [
('add', operator.add, math_ops.add, core.add),
('sub', operator.sub, math_ops.subtract, core.sub),
('mul', operator.mul, math_ops.multiply, core.mul),
('div', operator.truediv, math_ops.div, core.div),
('mod', operator.mod, math_ops.mod, core.mod),
('pow', operator.pow, math_ops.pow, core.pow_function),
('equal', None, math_ops.equal, core.equal),
('less', operator.lt, math_ops.less, core.less),
('less_equal', operator.le, math_ops.less_equal, core.less_equal),
('not_equal', None, math_ops.not_equal, core.not_equal),
('greater', operator.gt, math_ops.greater, core.greater),
('greater_equal', operator.ge, math_ops.greater_equal,
core.greater_equal),
]
self.test_lt_1 = self.x_probs_lt
self.test_lt_2 = self.channel_probs_lt
self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
self.broadcast_axes = [self.a0, self.a1, self.a3]
示例8: test_forward_rel_ops
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def test_forward_rel_ops():
t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
_test_forward_rel_op([t1, t2], math_ops.less)
_test_forward_rel_op([t1, t2], math_ops.greater)
_test_forward_rel_op([t1, t2], math_ops.less_equal)
_test_forward_rel_op([t1, t2], math_ops.greater_equal)
_test_forward_rel_op([t1, t2], math_ops.equal)
_test_forward_rel_op([t1, t2], math_ops.not_equal)
#######################################################################
# Main
# ----
示例9: _check_multiple_of
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def _check_multiple_of(value, multiple_of):
"""Checks that value `value` is a non-zero multiple of `multiple_of`.
Args:
value: an int32 scalar Tensor.
multiple_of: an int or int32 scalar Tensor.
Returns:
new_value: an int32 scalar Tensor matching `value`, but which includes an
assertion that `value` is a multiple of `multiple_of`.
"""
assert isinstance(value, ops.Tensor)
with ops.control_dependencies([
control_flow_ops.Assert(
math_ops.logical_and(
math_ops.equal(math_ops.mod(value, multiple_of), 0),
math_ops.not_equal(value, 0)),
[string_ops.string_join(
["Tensor %s should be a multiple of: " % value.name,
string_ops.as_string(multiple_of),
", but saw value: ",
string_ops.as_string(value),
". Consider setting pad=True."])])]):
new_value = array_ops.identity(
value, name="multiple_of_checked")
return new_value
示例10: finalize
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def finalize(self, output, final_state, sequence_lengths):
# Gather according to beam search result
# now predicted_ids is [M, N/B]
predicted_ids = beam_search.gather_tree(output.predicted_ids,
output.beam_parent_ids)
# TODO(Shancheng): pay attention
beam_width = output.beam_parent_ids.get_shape().as_list()
parent_ids = tf.concat([tf.zeros([1, beam_width[-1]], dtype=tf.int32),
output.beam_parent_ids[:-1, :]], 0)
# now logits is [M, N/B, C]
logits = beam_search.gather_tree(output.logits,
parent_ids)
# now attention scores is [M, N/B, L, H, W]
attention_scores = beam_search.gather_tree(output.attention_scores,
parent_ids)
# orginal length is the length of ungathered logits
sequence_lengths = math_ops.not_equal(predicted_ids, self.end_token)
sequence_lengths = tf.to_int32(sequence_lengths)
sequence_lengths = tf.reduce_sum(sequence_lengths, axis=0) + 1
# choose the top score item
predicted_ids = predicted_ids[:, 0:1]
logits = logits[:, 0:1]
attention_scores = attention_scores[:, 0:1]
# mask out
length = sequence_lengths[0]
logits = logits[0:length, :]
attention_scores = attention_scores[0:length, :]
final_outputs = DecoderOutput(
logits=self._padding(logits),
predicted_ids=self._padding(predicted_ids),
attention_scores=attention_scores)
return final_outputs, final_state
示例11: compute_mask
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def compute_mask(self, inputs, mask=None):
if not self.mask_zero:
return None
return math_ops.not_equal(inputs, 0)
示例12: _test_not_equal
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def _test_not_equal(data):
""" One iteration of not_equal"""
return _test_elemwise(math_ops.not_equal, data)
#######################################################################
# Squared_difference
# ------------------
示例13: test_forward_rel_ops
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def test_forward_rel_ops():
t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
_test_forward_rel_op([t1, t2], math_ops.less)
_test_forward_rel_op([t1, t2], math_ops.greater)
_test_forward_rel_op([t1, t2], math_ops.less_equal)
_test_forward_rel_op([t1, t2], math_ops.greater_equal)
_test_forward_rel_op([t1, t2], math_ops.equal)
_test_forward_rel_op([t1, t2], math_ops.not_equal)
#######################################################################
# ExpandDims
# ----------
示例14: lookup
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def lookup(self, keys, name=None):
"""Looks up `keys` in the table, outputs the corresponding values.
It assigns out-of-vocabulary keys to buckets based in their hashes.
Args:
keys: Keys to look up. May be either a `SparseTensor` or dense `Tensor`.
name: Optional name for the op.
Returns:
A `SparseTensor` if keys are sparse, otherwise a dense `Tensor`.
Raises:
TypeError: when `keys` doesn't match the table key data type.
"""
if keys.dtype != self._key_dtype:
raise TypeError("Signature mismatch. Keys must be dtype %s, got %s." %
(self._key_dtype, keys.dtype))
values = keys
if isinstance(keys, sparse_tensor.SparseTensor):
values = keys.values
if self._table and (self._table.key_dtype.base_dtype == dtypes.int64):
values = math_ops.to_int64(values)
if self._num_oov_buckets == 0:
ids = self._table.lookup(values, name=name)
else:
# TODO(yleon): Consider moving this functionality to its own kernel.
with ops.name_scope(name, "%s_Lookup" % self.name) as scope:
str_to_hash_bucket = self._get_string_to_hash_bucket_fn(
self._hasher_spec)
buckets = str_to_hash_bucket(
_as_string(values),
num_buckets=self._num_oov_buckets,
name="hash_bucket")
if self._table:
ids = self._table.lookup(values)
buckets = math_ops.add(buckets, self._table.size())
is_id_non_default = math_ops.not_equal(ids, self._table.default_value)
ids = array_ops.where(is_id_non_default, ids, buckets, name=scope)
else:
ids = buckets
if isinstance(keys, sparse_tensor.SparseTensor):
return sparse_tensor.SparseTensor(keys.indices, ids, keys.dense_shape)
return ids
示例15: _to_sparse_input
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import not_equal [as 別名]
def _to_sparse_input(input_tensor, ignore_value=None):
"""Converts a `Tensor` to a `SparseTensor`, dropping ignore_value cells.
If `input_tensor` is already a `SparseTensor`, just return it.
Args:
input_tensor: A string or integer `Tensor`.
ignore_value: Entries in `dense_tensor` equal to this value will be
absent from the resulting `SparseTensor`. If `None`, default value of
`dense_tensor`'s dtype will be used ('' for `str`, -1 for `int`).
Returns:
A `SparseTensor` with the same shape as `input_tensor`.
Raises:
ValueError: when `input_tensor`'s rank is `None`.
"""
input_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(
input_tensor)
if isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
return input_tensor
with ops.name_scope(None, 'to_sparse_input', (input_tensor, ignore_value,)):
input_rank = input_tensor.get_shape().ndims
if input_rank is None:
# TODO(b/32318825): Implement dense_to_sparse_tensor for undefined rank.
raise ValueError('Undefined input_tensor shape.')
if ignore_value is None:
ignore_value = '' if input_tensor.dtype == dtypes.string else -1
dense_shape = math_ops.cast(array_ops.shape(input_tensor), dtypes.int64)
indices = array_ops.where(math_ops.not_equal(
input_tensor, math_ops.cast(ignore_value, input_tensor.dtype)))
# Flattens the tensor and indices for use with gather.
flat_tensor = array_ops.reshape(input_tensor, [-1])
flat_indices = indices[:, input_rank - 1]
# Computes the correct flattened indices for 2d (or higher) tensors.
if input_rank > 1:
higher_dims = indices[:, :input_rank - 1]
shape_offsets = array_ops.stack(
_shape_offsets(array_ops.unstack(dense_shape)[1:]))
offsets = math_ops.reduce_sum(
math_ops.multiply(higher_dims, shape_offsets),
reduction_indices=[1])
flat_indices = math_ops.add(flat_indices, offsets)
values = array_ops.gather(flat_tensor, flat_indices)
return sparse_tensor_lib.SparseTensor(indices, values, dense_shape)