本文整理匯總了Python中tensorflow.python.ops.math_ops.mod方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.mod方法的具體用法?Python math_ops.mod怎麽用?Python math_ops.mod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.mod方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: rot90
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def rot90(image, k=1, name=None):
"""Rotate an image counter-clockwise by 90 degrees.
Args:
image: A 3-D tensor of shape `[height, width, channels]`.
k: A scalar integer. The number of times the image is rotated by 90 degrees.
name: A name for this operation (optional).
Returns:
A rotated 3-D tensor of the same type and shape as `image`.
"""
with ops.name_scope(name, 'rot90', [image, k]) as scope:
image = ops.convert_to_tensor(image, name='image')
image = control_flow_ops.with_dependencies(
_Check3DImage(image, require_static=False), image)
k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
k.get_shape().assert_has_rank(0)
k = math_ops.mod(k, 4)
def _rot90():
return array_ops.transpose(array_ops.reverse_v2(image, [1]),
[1, 0, 2])
def _rot180():
return array_ops.reverse_v2(image, [0, 1])
def _rot270():
return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
[1])
cases = [(math_ops.equal(k, 1), _rot90),
(math_ops.equal(k, 2), _rot180),
(math_ops.equal(k, 3), _rot270)]
ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
name=scope)
ret.set_shape([None, None, image.get_shape()[2]])
return ret
示例2: _IRFFTGradHelper
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def _IRFFTGradHelper(rank, rfft_fn):
"""Returns a gradient function for an IRFFT of the provided rank."""
# Can't happen because we don't register a gradient for IRFFT3D.
assert rank in (1, 2), "Gradient for IRFFT3D is not implemented."
def _Grad(op, grad):
"""A gradient function for IRFFT with the provided `rank` and `rfft_fn`."""
# Generate a simple mask like [1.0, 2.0, ..., 2.0, 1.0] for even-length FFTs
# and [1.0, 2.0, ..., 2.0] for odd-length FFTs. To reduce extra ops in the
# graph we special-case the situation where the FFT length and last
# dimension of the input are known at graph construction time.
fft_length = op.inputs[1]
is_odd = math_ops.mod(fft_length[-1], 2)
input_last_dimension = array_ops.shape(op.inputs[0])[-1]
mask = array_ops.concat(
[[1.0], 2.0 * array_ops.ones([input_last_dimension - 2 + is_odd]),
array_ops.ones([1 - is_odd])], 0)
rsize = math_ops.reciprocal(math_ops.to_float(_FFTSizeForGrad(grad, rank)))
# The gradient of IRFFT is the RFFT of the incoming gradient times a scaling
# factor and a mask. The mask scales the gradient for the Hermitian
# symmetric components of the RFFT by a factor of two, since these
# components are de-duplicated in the RFFT.
rfft = rfft_fn(grad, fft_length)
return rfft * math_ops.cast(rsize * mask, dtypes.complex64), None
return _Grad
示例3: _mod
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def _mod(self, x, y):
"""Modulo function that propagates x gradients."""
return array_ops.stop_gradient(math_ops.mod(x, y) - x) + x
示例4: _shard_indices
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def _shard_indices(self, keys):
key_shape = keys.get_shape()
if key_shape.ndims > 1:
# If keys are a matrix (i.e. a single key is a vector), we use the first
# element of each key vector to determine the shard.
keys = array_ops.slice(keys, [0, 0], [key_shape[0].value, 1])
keys = array_ops.reshape(keys, [-1])
indices = math_ops.mod(math_ops.abs(keys), self._num_shards)
return math_ops.cast(indices, dtypes.int32)
示例5: _do_transform
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def _do_transform(self, input_tensor):
sparse_id_values = math_ops.mod(input_tensor.values, self.bucket_size,
name="mod")
return sparse_tensor_py.SparseTensor(input_tensor.indices, sparse_id_values,
input_tensor.dense_shape)
示例6: __mod__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def __mod__(self, other):
return mod(self, other)
示例7: __rmod__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def __rmod__(self, other):
return mod(other, self)
示例8: rot90
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def rot90(image, k=1, name=None):
"""Rotate an image counter-clockwise by 90 degrees.
Args:
image: A 3-D tensor of shape `[height, width, channels]`.
k: A scalar integer. The number of times the image is rotated by 90 degrees.
name: A name for this operation (optional).
Returns:
A rotated 3-D tensor of the same type and shape as `image`.
"""
with ops.name_scope(name, 'rot90', [image, k]) as scope:
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
k.get_shape().assert_has_rank(0)
k = math_ops.mod(k, 4)
def _rot90():
return array_ops.transpose(array_ops.reverse_v2(image, [1]),
[1, 0, 2])
def _rot180():
return array_ops.reverse_v2(image, [0, 1])
def _rot270():
return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
[1])
cases = [(math_ops.equal(k, 1), _rot90),
(math_ops.equal(k, 2), _rot180),
(math_ops.equal(k, 3), _rot270)]
ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
name=scope)
ret.set_shape([None, None, image.get_shape()[2]])
return ret
示例9: insert_transformed_feature
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def insert_transformed_feature(self, columns_to_tensors):
"""Handles sparse column to id conversion."""
input_tensor = self._get_input_sparse_tensor(columns_to_tensors)
sparse_id_values = math_ops.mod(input_tensor.values, self.bucket_size,
name="mod")
columns_to_tensors[self] = sparse_tensor_py.SparseTensor(
input_tensor.indices, sparse_id_values, input_tensor.dense_shape)
示例10: setUp
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def setUp(self):
super(CoreBinaryOpsTest, self).setUp()
self.x_probs_broadcast_tensor = array_ops.reshape(
self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])
self.channel_probs_broadcast_tensor = array_ops.reshape(
self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])
# == and != are not element-wise for tf.Tensor, so they shouldn't be
# elementwise for LabeledTensor, either.
self.ops = [
('add', operator.add, math_ops.add, core.add),
('sub', operator.sub, math_ops.subtract, core.sub),
('mul', operator.mul, math_ops.multiply, core.mul),
('div', operator.truediv, math_ops.div, core.div),
('mod', operator.mod, math_ops.mod, core.mod),
('pow', operator.pow, math_ops.pow, core.pow_function),
('equal', None, math_ops.equal, core.equal),
('less', operator.lt, math_ops.less, core.less),
('less_equal', operator.le, math_ops.less_equal, core.less_equal),
('not_equal', None, math_ops.not_equal, core.not_equal),
('greater', operator.gt, math_ops.greater, core.greater),
('greater_equal', operator.ge, math_ops.greater_equal,
core.greater_equal),
]
self.test_lt_1 = self.x_probs_lt
self.test_lt_2 = self.channel_probs_lt
self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
self.broadcast_axes = [self.a0, self.a1, self.a3]
示例11: testFloat
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def testFloat(self):
x = [0.5, 0.7, 0.3]
for dtype in [np.float32, np.double]:
# Test scalar and vector versions.
for denom in [x[0], [x[0]] * 3]:
x_np = np.array(x, dtype=dtype)
with self.test_session(use_gpu=True):
x_tf = constant_op.constant(x_np, shape=x_np.shape)
y_tf = math_ops.mod(x_tf, denom)
y_tf_np = y_tf.eval()
y_np = np.fmod(x_np, denom)
self.assertAllClose(y_tf_np, y_np, atol=1e-2)
示例12: testFixed
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def testFixed(self):
x = [5, 10, 23]
for dtype in [np.int32, np.int64]:
# Test scalar and vector versions.
for denom in [x[0], x]:
x_np = np.array(x, dtype=dtype)
with self.test_session(use_gpu=True):
x_tf = constant_op.constant(x_np, shape=x_np.shape)
y_tf = math_ops.mod(x_tf, denom)
y_tf_np = y_tf.eval()
y_np = np.mod(x_np, denom)
self.assertAllClose(y_tf_np, y_np)
示例13: rot90
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def rot90(image, k=1, name=None):
"""Rotate an image counter-clockwise by 90 degrees.
Args:
image: A 3-D tensor of shape `[height, width, channels]`.
k: A scalar integer. The number of times the image is rotated by 90 degrees.
name: A name for this operation (optional).
Returns:
A rotated 3-D tensor of the same type and shape as `image`.
"""
with ops.name_scope(name, 'rot90', [image, k]) as scope:
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
k.get_shape().assert_has_rank(0)
k = math_ops.mod(k, 4)
def _rot90():
return array_ops.transpose(array_ops.reverse(image, [False, True, False]),
[1, 0, 2])
def _rot180():
return array_ops.reverse(image, [True, True, False])
def _rot270():
return array_ops.reverse(array_ops.transpose(image, [1, 0, 2]),
[False, True, False])
cases = [(math_ops.equal(k, 1), _rot90),
(math_ops.equal(k, 2), _rot180),
(math_ops.equal(k, 3), _rot270)]
ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
name=scope)
ret.set_shape([None, None, image.get_shape()[2]])
return ret
示例14: adjust_hue
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def adjust_hue(image, delta, name=None):
"""Adjust hue of an RGB image.
This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the hue channel, converts
back to RGB and then back to the original data type. If several adjustments
are chained it is advisable to minimize the number of redundant conversions.
`image` is an RGB image. The image hue is adjusted by converting the
image to HSV and rotating the hue channel (H) by
`delta`. The image is then converted back to RGB.
`delta` must be in the interval `[-1, 1]`.
Args:
image: RGB image or images. Size of the last dimension must be 3.
delta: float. How much to add to the hue channel.
name: A name for this operation (optional).
Returns:
Adjusted image(s), same shape and DType as `image`.
"""
with ops.name_scope(name, 'adjust_hue', [image]) as name:
image = ops.convert_to_tensor(image, name='image')
# Remember original dtype to so we can convert back if needed
orig_dtype = image.dtype
flt_image = convert_image_dtype(image, dtypes.float32)
# TODO(zhengxq): we will switch to the fused version after we add a GPU
# kernel for that.
fused = os.environ.get('TF_ADJUST_HUE_FUSED', '')
fused = fused.lower() in ('true', 't', '1')
if not fused:
hsv = gen_image_ops.rgb_to_hsv(flt_image)
hue = array_ops.slice(hsv, [0, 0, 0], [-1, -1, 1])
saturation = array_ops.slice(hsv, [0, 0, 1], [-1, -1, 1])
value = array_ops.slice(hsv, [0, 0, 2], [-1, -1, 1])
# Note that we add 2*pi to guarantee that the resulting hue is a positive
# floating point number since delta is [-0.5, 0.5].
hue = math_ops.mod(hue + (delta + 1.), 1.)
hsv_altered = array_ops.concat([hue, saturation, value], 2)
rgb_altered = gen_image_ops.hsv_to_rgb(hsv_altered)
else:
rgb_altered = gen_image_ops.adjust_hue(flt_image, delta)
return convert_image_dtype(rgb_altered, orig_dtype)
示例15: adjust_hue
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 別名]
def adjust_hue(image, delta, name=None):
"""Adjust hue of an RGB image.
This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the hue channel, converts
back to RGB and then back to the original data type. If several adjustments
are chained it is advisable to minimize the number of redundant conversions.
`image` is an RGB image. The image hue is adjusted by converting the
image to HSV and rotating the hue channel (H) by
`delta`. The image is then converted back to RGB.
`delta` must be in the interval `[-1, 1]`.
Args:
image: RGB image or images. Size of the last dimension must be 3.
delta: float. How much to add to the hue channel.
name: A name for this operation (optional).
Returns:
Adjusted image(s), same shape and DType as `image`.
"""
with ops.name_scope(name, 'adjust_hue', [image]) as name:
image = ops.convert_to_tensor(image, name='image')
# Remember original dtype to so we can convert back if needed
orig_dtype = image.dtype
flt_image = convert_image_dtype(image, dtypes.float32)
# TODO(zhengxq): we will switch to the fused version after we add a GPU
# kernel for that.
fused = os.environ.get('TF_ADJUST_HUE_FUSED', '')
fused = fused.lower() in ('true', 't', '1')
if not fused:
hsv = gen_image_ops.rgb_to_hsv(flt_image)
hue = array_ops.slice(hsv, [0, 0, 0], [-1, -1, 1])
saturation = array_ops.slice(hsv, [0, 0, 1], [-1, -1, 1])
value = array_ops.slice(hsv, [0, 0, 2], [-1, -1, 1])
# Note that we add 2*pi to guarantee that the resulting hue is a positive
# floating point number since delta is [-0.5, 0.5].
hue = math_ops.mod(hue + (delta + 1.), 1.)
hsv_altered = array_ops.concat(2, [hue, saturation, value])
rgb_altered = gen_image_ops.hsv_to_rgb(hsv_altered)
else:
rgb_altered = gen_image_ops.adjust_hue(flt_image, delta)
return convert_image_dtype(rgb_altered, orig_dtype)