本文整理匯總了Python中tensorflow.python.ops.math_ops.minimum方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.minimum方法的具體用法?Python math_ops.minimum怎麽用?Python math_ops.minimum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.minimum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _optimal_step_size
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def _optimal_step_size(last_step,
error_ratio,
safety=0.9,
ifactor=10.0,
dfactor=0.2,
order=5,
name=None):
"""Calculate the optimal size for the next Runge-Kutta step."""
with ops.name_scope(
name, 'optimal_step_size', [last_step, error_ratio]) as scope:
error_ratio = math_ops.cast(error_ratio, last_step.dtype)
exponent = math_ops.cast(1 / order, last_step.dtype)
# this looks more complex than necessary, but importantly it keeps
# error_ratio in the numerator so we can't divide by zero:
factor = math_ops.maximum(
1 / ifactor,
math_ops.minimum(error_ratio ** exponent / safety, 1 / dfactor))
return math_ops.div(last_step, factor, name=scope)
示例2: _adaptive_max_norm
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
"""Find max_norm given norm and previous average."""
with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
log_norm = math_ops.log(norm + epsilon)
def moving_average(name, value, decay):
moving_average_variable = vs.get_variable(
name, shape=value.get_shape(), dtype=value.dtype,
initializer=init_ops.zeros_initializer, trainable=False)
return moving_averages.assign_moving_average(
moving_average_variable, value, decay, zero_debias=False)
# quicker adaptation at the beginning
if global_step is not None:
n = math_ops.to_float(global_step)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
variance = sq_mean - math_ops.square(mean)
std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
max_norms = math_ops.exp(mean + std_factor*std)
return max_norms, mean
示例3: _huber_loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def _huber_loss(labels, predictions, config):
""" Huber loss tensor"""
delta = config.huber_delta
predictions = math_ops.to_float(predictions)
labels = math_ops.to_float(labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
error = math_ops.subtract(predictions, labels)
abs_error = math_ops.abs(error)
quadratic = math_ops.minimum(abs_error, delta)
# The following expression is the same in value as
# tf.maximum(abs_error - delta, 0), but importantly the gradient for the
# expression when abs_error == delta is 0 (for tf.maximum it would be 1).
# This is necessary to avoid doubling the gradient, since there is already a
# nonzero contribution to the gradient from the quadratic term.
linear = math_ops.subtract(abs_error, quadratic)
losses = math_ops.add(
math_ops.multiply(
ops.convert_to_tensor(0.5, dtype=quadratic.dtype),
math_ops.multiply(quadratic, quadratic)),
math_ops.multiply(delta, linear))
return losses
示例4: _huber_loss
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def _huber_loss(labels, predictions, mask, config):
""" Huber loss according to masking"""
delta = config.huber_delta
predictions = math_ops.to_float(predictions)
labels = math_ops.to_float(labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
error = math_ops.subtract(predictions, labels)
abs_error = math_ops.abs(error)
quadratic = math_ops.minimum(abs_error, delta)
# The following expression is the same in value as
# tf.maximum(abs_error - delta, 0), but importantly the gradient for the
# expression when abs_error == delta is 0 (for tf.maximum it would be 1).
# This is necessary to avoid doubling the gradient, since there is already a
# nonzero contribution to the gradient from the quadratic term.
linear = math_ops.subtract(abs_error, quadratic)
losses = math_ops.add(
math_ops.multiply(
ops.convert_to_tensor(0.5, dtype=quadratic.dtype),
math_ops.multiply(quadratic, quadratic)),
math_ops.multiply(delta, linear))
huber_loss = tf.reduce_sum(losses) / tf.reduce_sum(mask)
return huber_loss
示例5: rotate90
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def rotate90(bboxes, xs, ys, k):
# bboxes = tf.Print(bboxes, [bboxes], 'before rotate',summarize = 100)
ymin, xmin, ymax, xmax = [bboxes[:, i] for i in range(4)]
xmin, ymin = tf_rotate_point_by_90(xmin, ymin, k)
xmax, ymax = tf_rotate_point_by_90(xmax, ymax, k)
new_xmin = tf.minimum(xmin, xmax)
new_xmax = tf.maximum(xmin, xmax)
new_ymin = tf.minimum(ymin, ymax)
new_ymax = tf.maximum(ymin, ymax)
bboxes = tf.stack([new_ymin, new_xmin, new_ymax, new_xmax])
bboxes = tf.transpose(bboxes)
xs, ys = tf_rotate_point_by_90(xs, ys, k)
return bboxes, xs, ys
示例6: LRSchedule
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def LRSchedule(global_step, d_model, warmup_steps=4000):
if global_step is None:
raise ValueError("global_step is required for learning_rate_schedule.")
def deal_lr(global_step, d_model, warmup_steps):
d_model = ops.convert_to_tensor(d_model, dtype=tf.float32)
dtype = d_model.dtype
warmup_steps = math_ops.cast(warmup_steps, dtype)
global_step_recomp = math_ops.cast(global_step, dtype)
arg1 = math_ops.rsqrt(global_step_recomp)
arg2 = math_ops.multiply(global_step_recomp, math_ops.pow(warmup_steps, -1.5))
return math_ops.multiply(math_ops.rsqrt(d_model), math_ops.minimum(arg1, arg2))
return functools.partial(deal_lr, global_step, d_model, warmup_steps)
示例7: poincare_normalize
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def poincare_normalize(x, axis=1, epsilon=1e-5, name=None):
"""Project into the Poincare ball with norm <= 1.0 - epsilon.
https://en.wikipedia.org/wiki/Poincare_ball_model
Used in
Poincare Embeddings for Learning Hierarchical Representations
Maximilian Nickel, Douwe Kiela
https://arxiv.org/pdf/1705.08039.pdf
For a 1-D tensor with `axis = 0`, computes
(x * (1 - epsilon)) / ||x|| if ||x|| > 1 - epsilon
output =
x otherwise
For `x` with more dimensions, independently normalizes each 1-D slice along
dimension `axis`.
Args:
x: A `Tensor`.
axis: Axis along which to normalize. A scalar or a vector of integers.
epsilon: A small deviation from the edge of the unit sphere for numerical
stability.
name: A name for this operation (optional).
Returns:
A `Tensor` with the same shape as `x`.
"""
with ops.name_scope(name, 'poincare_normalize', [x]) as name:
x = ops.convert_to_tensor(x, name='x')
square_sum = math_ops.reduce_sum(math_ops.square(x), axis, keepdims=True)
x_inv_norm = math_ops.rsqrt(square_sum)
x_inv_norm = math_ops.minimum((1. - epsilon) * x_inv_norm, 1.)
return math_ops.multiply(x, x_inv_norm, name=name)
示例8: _adaptive_max_norm
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
"""Find max_norm given norm and previous average."""
with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
log_norm = math_ops.log(norm + epsilon)
def moving_average(name, value, decay):
moving_average_variable = vs.get_variable(
name,
shape=value.get_shape(),
dtype=value.dtype,
initializer=init_ops.zeros_initializer(),
trainable=False)
return moving_averages.assign_moving_average(
moving_average_variable, value, decay, zero_debias=False)
# quicker adaptation at the beginning
if global_step is not None:
n = math_ops.cast(global_step, dtypes.float32)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
variance = sq_mean - math_ops.square(mean)
std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
max_norms = math_ops.exp(mean + std_factor * std)
return max_norms, mean
示例9: resize_audio_with_crop_or_pad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def resize_audio_with_crop_or_pad(image, target_height, target_width,
dynamic_shape=False):
image = tf.convert_to_tensor(image, name='audio')
original_height, _ = _ImageDimensions(image, dynamic_shape=dynamic_shape)
if target_height <= 0:
raise ValueError('target_height must be > 0.')
if dynamic_shape:
max_ = math_ops.maximum
min_ = math_ops.minimum
else:
max_ = max
min_ = min
height_diff = target_height - original_height
offset_crop_height = max_(-height_diff // 2, 0)
offset_pad_height = max_(height_diff // 2, 0)
# Maybe crop if needed.
cropped = crop_to_1d_bounding_box(image, offset_crop_height,
min_(target_height, original_height),
dynamic_shape=dynamic_shape)
# Maybe pad if needed.
resized = pad_to_1d_bounding_box(cropped, offset_pad_height,
target_height,
dynamic_shape=dynamic_shape)
if resized.get_shape().ndims is None:
raise ValueError('resized contains no shape.')
if not resized.get_shape()[0].is_compatible_with(target_height):
raise ValueError('resized height is not correct.')
return resized
# In[5]:
示例10: _num_relevant
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def _num_relevant(labels, k):
"""Computes number of relevant values for each row in labels.
For labels with shape [D1, ... DN, num_labels], this is the minimum of
`num_labels` and `k`.
Args:
labels: `int64` `Tensor` or `SparseTensor` with shape
[D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
target classes for the associated prediction. Commonly, N=1 and `labels`
has shape [batch_size, num_labels].
k: Integer, k for @k metric.
Returns:
Integer `Tensor` of shape [D1, ... DN], where each value is the number of
relevant values for that row.
Raises:
ValueError: if inputs have invalid dtypes or values.
"""
if k < 1:
raise ValueError('Invalid k=%s.' % k)
with ops.name_scope(None, 'num_relevant', (labels,)) as scope:
# For SparseTensor, calculate separate count for each row.
labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
if isinstance(labels, sparse_tensor.SparseTensor):
return math_ops.minimum(sets.set_size(labels), k, name=scope)
# For dense Tensor, calculate scalar count based on last dimension, and
# tile across labels shape.
labels_shape = array_ops.shape(labels)
labels_size = labels_shape[-1]
num_relevant_scalar = math_ops.minimum(labels_size, k)
return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope)
示例11: clip_by_value
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def clip_by_value(t, clip_value_min, clip_value_max,
name=None):
"""Clips tensor values to a specified min and max.
Given a tensor `t`, this operation returns a tensor of the same type and
shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`.
Any values less than `clip_value_min` are set to `clip_value_min`. Any values
greater than `clip_value_max` are set to `clip_value_max`.
Args:
t: A `Tensor`.
clip_value_min: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape
as `t`. The minimum value to clip by.
clip_value_max: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape
as `t`. The maximum value to clip by.
name: A name for the operation (optional).
Returns:
A clipped `Tensor`.
Raises:
ValueError: if the clip tensors would trigger array broadcasting
that would make the returned tensor larger than the input.
"""
with ops.name_scope(name, "clip_by_value",
[t, clip_value_min, clip_value_max]) as name:
t = ops.convert_to_tensor(t, name="t")
# Go through list of tensors, for each value in each tensor clip
t_min = math_ops.minimum(t, clip_value_max)
# Assert that the shape is compatible with the initial shape,
# to prevent unintentional broadcasting.
_ = t.shape.merge_with(t_min.shape)
t_max = math_ops.maximum(t_min, clip_value_min, name=name)
_ = t.shape.merge_with(t_max.shape)
return t_max
示例12: clip_by_average_norm
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def clip_by_average_norm(t, clip_norm, name=None):
"""Clips tensor values to a maximum average L2-norm.
Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
normalizes `t` so that its average L2-norm is less than or equal to
`clip_norm`. Specifically, if the average L2-norm is already less than or
equal to `clip_norm`, then `t` is not modified. If the average L2-norm is
greater than `clip_norm`, then this operation returns a tensor of the same
type and shape as `t` with its values set to:
`t * clip_norm / l2norm_avg(t)`
In this case, the average L2-norm of the output tensor is `clip_norm`.
This operation is typically used to clip gradients before applying them with
an optimizer.
Args:
t: A `Tensor`.
clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
name: A name for the operation (optional).
Returns:
A clipped `Tensor`.
"""
with ops.name_scope(name, "clip_by_average_norm", [t, clip_norm]) as name:
t = ops.convert_to_tensor(t, name="t")
# Calculate L2-norm per element, clip elements by ratio of clip_norm to
# L2-norm per element
n_element = math_ops.cast(array_ops.size(t), dtypes.float32)
l2norm_inv = math_ops.rsqrt(
math_ops.reduce_sum(t * t, math_ops.range(array_ops.rank(t))))
tclip = array_ops.identity(
t * clip_norm * math_ops.minimum(
l2norm_inv * n_element, constant_op.constant(1.0) / clip_norm),
name=name)
return tclip
示例13: per_image_standardization
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def per_image_standardization(image):
"""Linearly scales `image` to have zero mean and unit norm.
This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average
of all values in image, and
`adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`.
`stddev` is the standard deviation of all values in `image`. It is capped
away from zero to protect against division by 0 when handling uniform images.
Args:
image: 3-D tensor of shape `[height, width, channels]`.
Returns:
The standardized image with same shape as `image`.
Raises:
ValueError: if the shape of 'image' is incompatible with this function.
"""
image = ops.convert_to_tensor(image, name='image')
image = control_flow_ops.with_dependencies(
_Check3DImage(image, require_static=False), image)
num_pixels = math_ops.reduce_prod(array_ops.shape(image))
image = math_ops.cast(image, dtype=dtypes.float32)
image_mean = math_ops.reduce_mean(image)
variance = (math_ops.reduce_mean(math_ops.square(image)) -
math_ops.square(image_mean))
variance = gen_nn_ops.relu(variance)
stddev = math_ops.sqrt(variance)
# Apply a minimum normalization that protects us against uniform images.
min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32))
pixel_value_scale = math_ops.maximum(stddev, min_stddev)
pixel_value_offset = image_mean
image = math_ops.subtract(image, pixel_value_offset)
image = math_ops.div(image, pixel_value_scale)
return image
示例14: __call__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
if dtype is None:
dtype = self.dtype
# Check the shape
if len(shape) < 2:
raise ValueError("The tensor to initialize must be "
"at least two-dimensional")
# Flatten the input shape with the last dimension remaining
# its original shape so it works for conv2d
num_rows = 1
for dim in shape[:-1]:
num_rows *= dim
num_cols = shape[-1]
flat_shape = (num_rows, num_cols)
# Generate a random matrix
a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)
# Compute the qr factorization
q, r = linalg_ops.qr(a, full_matrices=False)
# Make Q uniform
square_len = math_ops.minimum(num_rows, num_cols)
d = array_ops.diag_part(r[:square_len, :square_len])
ph = d / math_ops.abs(d)
q *= ph
# Pad zeros to Q (if rows smaller than cols)
if num_rows < num_cols:
padding = array_ops.zeros([num_rows, num_cols - num_rows], dtype=dtype)
q = array_ops.concat([q, padding], 1)
return self.gain * array_ops.reshape(q, shape)
示例15: argmin
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import minimum [as 別名]
def argmin(x, axis=-1):
"""Returns the index of the minimum value along an axis.
Arguments:
x: Tensor or variable.
axis: axis along which to perform the reduction.
Returns:
A tensor.
"""
axis = _normalize_axis(axis, ndim(x))
return math_ops.argmin(x, axis)