當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.maximum方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.maximum方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.maximum方法的具體用法?Python math_ops.maximum怎麽用?Python math_ops.maximum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.maximum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _lower_bound

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _lower_bound(inputs, bound, name=None):
    """Same as tf.maximum, but with helpful gradient for inputs < bound.

    The gradient is overwritten so that it is passed through if the input is not
    hitting the bound. If it is, only gradients that push `inputs` higher than
    the bound are passed through. No gradients are passed through to the bound.

    Args:
      inputs: input tensor
      bound: lower bound for the input tensor
      name: name for this op

    Returns:
      tf.maximum(inputs, bound)
    """
    with ops.name_scope(name, 'GDNLowerBound', [inputs, bound]) as scope:
      inputs = ops.convert_to_tensor(inputs, name='inputs')
      bound = ops.convert_to_tensor(bound, name='bound')
      with ops.get_default_graph().gradient_override_map(
          {'Maximum': 'GDNLowerBound'}):
        return math_ops.maximum(inputs, bound, name=scope) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:23,代碼來源:layers.py

示例2: _infer_fft_length_for_irfft

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _infer_fft_length_for_irfft(input_tensor, fft_rank):
  """Infers the `fft_length` argument for a `rank` IRFFT from `input_tensor`."""
  # A TensorShape for the inner fft_rank dimensions.
  fft_shape = input_tensor.get_shape()[-fft_rank:]

  # If any dim is unknown, fall back to tensor-based math.
  if not fft_shape.is_fully_defined():
    fft_length = _array_ops.unstack(_array_ops.shape(input_tensor)[-fft_rank:])
    fft_length[-1] = _math_ops.maximum(0, 2 * (fft_length[-1] - 1))
    return _array_ops.stack(fft_length)

  # Otherwise, return a constant.
  fft_length = fft_shape.as_list()
  if fft_length:
    fft_length[-1] = max(0, 2 * (fft_length[-1] - 1))
  return _ops.convert_to_tensor(fft_length, _dtypes.int32) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:spectral_ops.py

示例3: _MinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _MinOrMaxGrad(op, grad):
  """Gradient for Min or Max. Amazingly it's precisely the same code."""
  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  y = op.outputs[0]
  y = array_ops.reshape(y, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)

  # Compute the number of selected (maximum or minimum) elements in each
  # reduction dimension. If there are multiple minimum or maximum elements
  # then the gradient will be divided between them.
  indicators = math_ops.cast(math_ops.equal(y, op.inputs[0]), grad.dtype)
  num_selected = array_ops.reshape(
      math_ops.reduce_sum(indicators, op.inputs[1]), output_shape_kept_dims)

  return [math_ops.div(indicators, num_selected) * grad, None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:math_grad.py

示例4: _SegmentMinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _SegmentMinOrMaxGrad(op, grad, is_sorted):
  """Gradient for SegmentMin and (unsorted) SegmentMax. They share similar code."""
  zeros = array_ops.zeros(array_ops.shape(op.inputs[0]),
                          dtype=op.inputs[0].dtype)

  # Get the number of selected (minimum or maximum) elements in each segment.
  gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1])
  is_selected = math_ops.equal(op.inputs[0], gathered_outputs)
  if is_sorted:
    num_selected = math_ops.segment_sum(math_ops.cast(is_selected, grad.dtype),
                                        op.inputs[1])
  else:
    num_selected = math_ops.unsorted_segment_sum(math_ops.cast(is_selected, grad.dtype),
                                                 op.inputs[1], op.inputs[2])

  # Compute the gradient for each segment. The gradient for the ith segment is
  # divided evenly among the selected elements in that segment.
  weighted_grads = math_ops.div(grad, num_selected)
  gathered_grads = array_ops.gather(weighted_grads, op.inputs[1])

  if is_sorted:
    return array_ops.where(is_selected, gathered_grads, zeros), None
  else:
    return array_ops.where(is_selected, gathered_grads, zeros), None, None 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:math_grad.py

示例5: max

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def max(x, axis=None, keepdims=False):
  """Maximum value in a tensor.

  Arguments:
      x: A tensor or variable.
      axis: An integer, the axis to find maximum values.
      keepdims: A boolean, whether to keep the dimensions or not.
          If `keepdims` is `False`, the rank of the tensor is reduced
          by 1. If `keepdims` is `True`,
          the reduced dimension is retained with length 1.

  Returns:
      A tensor with maximum values of `x`.
  """
  axis = _normalize_axis(axis, ndim(x))
  return math_ops.reduce_max(x, reduction_indices=axis, keep_dims=keepdims) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:backend.py

示例6: _optimal_step_size

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _optimal_step_size(last_step,
                       error_ratio,
                       safety=0.9,
                       ifactor=10.0,
                       dfactor=0.2,
                       order=5,
                       name=None):
  """Calculate the optimal size for the next Runge-Kutta step."""
  with ops.name_scope(
      name, 'optimal_step_size', [last_step, error_ratio]) as scope:
    error_ratio = math_ops.cast(error_ratio, last_step.dtype)
    exponent = math_ops.cast(1 / order, last_step.dtype)
    # this looks more complex than necessary, but importantly it keeps
    # error_ratio in the numerator so we can't divide by zero:
    factor = math_ops.maximum(
        1 / ifactor,
        math_ops.minimum(error_ratio ** exponent / safety, 1 / dfactor))
    return math_ops.div(last_step, factor, name=scope) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:odes.py

示例7: _SegmentMinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _SegmentMinOrMaxGrad(op, grad):
  """Gradient for SegmentMin and SegmentMax. Both share the same code."""
  zeros = array_ops.zeros(
      array_ops.shape(op.inputs[0]), dtype=op.inputs[0].dtype)

  # Get the number of selected (minimum or maximum) elements in each segment.
  gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1])
  is_selected = math_ops.equal(op.inputs[0], gathered_outputs)
  num_selected = math_ops.segment_sum(
      math_ops.cast(is_selected, grad.dtype), op.inputs[1])

  # Compute the gradient for each segment. The gradient for the ith segment is
  # divided evenly among the selected elements in that segment.
  weighted_grads = math_ops.div(grad, num_selected)
  gathered_grads = array_ops.gather(weighted_grads, op.inputs[1])

  return array_ops.where(is_selected, gathered_grads, zeros), None 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:19,代碼來源:math_grad.py

示例8: _get_sharding_func

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _get_sharding_func(size, num_shards):
    """Create sharding function for scatter update."""

    def func(ids):
      if num_shards == 1:
        return None, ids
      else:
        ids_per_shard = size // num_shards
        extras = size % num_shards
        assignments = math_ops.maximum(ids // (ids_per_shard + 1),
                                       (ids - extras) // ids_per_shard)
        new_ids = array_ops.where(assignments < extras,
                                  ids % (ids_per_shard + 1),
                                  (ids - extras) % ids_per_shard)
        return assignments, new_ids

    return func 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:19,代碼來源:factorization_ops.py

示例9: setUp

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def setUp(self):
    super(FloatBinaryOpsTest, self).setUp()

    self.ops = [
        ('igamma', None, math_ops.igamma, core.igamma),
        ('igammac', None, math_ops.igammac, core.igammac),
        ('zeta', None, math_ops.zeta, core.zeta),
        ('polygamma', None, math_ops.polygamma, core.polygamma),
        ('maximum', None, math_ops.maximum, core.maximum),
        ('minimum', None, math_ops.minimum, core.minimum),
        ('squared_difference', None, math_ops.squared_difference,
         core.squared_difference),
    ]
    total_size = np.prod([v.size for v in self.original_lt.axes.values()])
    test_lt = core.LabeledTensor(
        math_ops.cast(self.original_lt, dtypes.float32) / total_size,
        self.original_lt.axes)
    self.test_lt_1 = test_lt
    self.test_lt_2 = 1.0 - test_lt
    self.test_lt_1_broadcast = self.test_lt_1.tensor
    self.test_lt_2_broadcast = self.test_lt_2.tensor
    self.broadcast_axes = self.test_lt_1.axes 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:24,代碼來源:core_test.py

示例10: masked_maximum

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def masked_maximum(data, mask, dim=1):
  """Computes the axis wise maximum over chosen elements.

  Args:
    data: 2-D float `Tensor` of size [n, m].
    mask: 2-D Boolean `Tensor` of size [n, m].
    dim: The dimension over which to compute the maximum.

  Returns:
    masked_maximums: N-D `Tensor`.
      The maximized dimension is of size 1 after the operation.
  """
  axis_minimums = math_ops.reduce_min(data, dim, keepdims=True)
  masked_maximums = math_ops.reduce_max(
      math_ops.multiply(data - axis_minimums, mask), dim,
      keepdims=True) + axis_minimums
  return masked_maximums 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:19,代碼來源:metric_learning.py

示例11: masked_maximum

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def masked_maximum(data, mask, dim=1):
  """Computes the axis wise maximum over chosen elements.

  Args:
    data: 2-D float `Tensor` of size [n, m].
    mask: 2-D Boolean `Tensor` of size [n, m].
    dim: The dimension over which to compute the maximum.

  Returns:
    masked_maximums: N-D `Tensor`.
      The maximized dimension is of size 1 after the operation.
  """
  axis_minimums = math_ops.reduce_min(data, dim, keep_dims=True)
  masked_maximums = math_ops.reduce_max(
      math_ops.multiply(
          data - axis_minimums, mask), dim, keep_dims=True) + axis_minimums
  return masked_maximums 
開發者ID:CongWeilin,項目名稱:cluster-loss-tensorflow,代碼行數:19,代碼來源:metric_loss_ops.py

示例12: _MinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _MinOrMaxGrad(op, grad):
  """Gradient for Min or Max. Amazingly it's precisely the same code."""
  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  y = op.outputs[0]
  y = array_ops.reshape(y, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)

  # Compute the number of selected (maximum or minimum) elements in each
  # reduction dimension. If there are multiple minimum or maximum elements
  # then the gradient will be divided between them.
  indicators = math_ops.cast(math_ops.equal(y, op.inputs[0]), grad.dtype)
  num_selected = array_ops.reshape(
      math_ops.reduce_sum(indicators, op.inputs[1]),
      output_shape_kept_dims)

  return [math_ops.div(indicators, num_selected) * grad, None] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:math_grad.py

示例13: _SegmentMinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _SegmentMinOrMaxGrad(op, grad):
  """Gradient for SegmentMin and SegmentMax. Both share the same code."""
  zeros = array_ops.zeros(array_ops.shape(op.inputs[0]),
                          dtype=op.inputs[0].dtype)

  # Get the number of selected (minimum or maximum) elements in each segment.
  gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1])
  is_selected = math_ops.equal(op.inputs[0], gathered_outputs)
  num_selected = math_ops.segment_sum(math_ops.cast(is_selected, grad.dtype),
                                      op.inputs[1])

  # Compute the gradient for each segment. The gradient for the ith segment is
  # divided evenly among the selected elements in that segment.
  weighted_grads = math_ops.div(grad, num_selected)
  gathered_grads = array_ops.gather(weighted_grads, op.inputs[1])

  return math_ops.select(is_selected, gathered_grads, zeros), None 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:math_grad.py

示例14: rotate90

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def rotate90(bboxes, xs, ys, k):
#     bboxes = tf.Print(bboxes, [bboxes], 'before rotate',summarize = 100)
    ymin, xmin, ymax, xmax = [bboxes[:, i] for i in range(4)]
    xmin, ymin = tf_rotate_point_by_90(xmin, ymin, k)
    xmax, ymax = tf_rotate_point_by_90(xmax, ymax, k)
    
    new_xmin = tf.minimum(xmin, xmax)
    new_xmax = tf.maximum(xmin, xmax)
    
    new_ymin = tf.minimum(ymin, ymax)
    new_ymax = tf.maximum(ymin, ymax)
    
    bboxes = tf.stack([new_ymin, new_xmin, new_ymax, new_xmax])
    bboxes = tf.transpose(bboxes)

    xs, ys = tf_rotate_point_by_90(xs, ys, k)
    return bboxes, xs, ys 
開發者ID:ZJULearning,項目名稱:pixel_link,代碼行數:19,代碼來源:tf_image.py

示例15: _apply_dense

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import maximum [as 別名]
def _apply_dense(self, grad, var):
        lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
        beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
        beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
        if var.dtype.base_dtype == tf.float16:
            eps = 1e-7
            # Can't use 1e-8 due to underflow -- not sure if it makes a big difference.
        else:
            eps = 1e-8

        v = self.get_slot(var, "v")
        v_t = v.assign(beta1_t * v + (1. - beta1_t) * grad)
        m = self.get_slot(var, "m")
        m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad)))
        g_t = v_t / m_t

        var_update = state_ops.assign_sub(var, lr_t * g_t)
        return control_flow_ops.group(*[var_update, m_t, v_t]) 
開發者ID:vanzytay,項目名稱:EMNLP2018_NLI,代碼行數:20,代碼來源:opt.py


注:本文中的tensorflow.python.ops.math_ops.maximum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。