本文整理匯總了Python中tensorflow.python.ops.math_ops.matmul方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.matmul方法的具體用法?Python math_ops.matmul怎麽用?Python math_ops.matmul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.matmul方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: xw_plus_b
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def xw_plus_b(x, weights, biases, name=None): # pylint: disable=invalid-name
"""Computes matmul(x, weights) + biases.
Args:
x: a 2D tensor. Dimensions typically: batch, in_units
weights: a 2D tensor. Dimensions typically: in_units, out_units
biases: a 1D tensor. Dimensions: out_units
name: A name for the operation (optional). If not specified
"xw_plus_b" is used.
Returns:
A 2-D Tensor computing matmul(x, weights) + biases.
Dimensions typically: batch, out_units.
"""
with ops.name_scope(name, "xw_plus_b", [x, weights, biases]) as name:
x = ops.convert_to_tensor(x, name="x")
weights = ops.convert_to_tensor(weights, name="weights")
biases = ops.convert_to_tensor(biases, name="biases")
mm = math_ops.matmul(x, weights)
return bias_add(mm, biases, name=name)
示例2: xw_plus_b_v1
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def xw_plus_b_v1(x, weights, biases, name=None): # pylint: disable=invalid-name
"""Computes matmul(x, weights) + biases.
This is a deprecated version of that will soon be removed.
Args:
x: a 2D tensor. Dimensions typically: batch, in_units
weights: a 2D tensor. Dimensions typically: in_units, out_units
biases: a 1D tensor. Dimensions: out_units
name: A name for the operation (optional). If not specified
"xw_plus_b_v1" is used.
Returns:
A 2-D Tensor computing matmul(x, weights) + biases.
Dimensions typically: batch, out_units.
"""
with ops.name_scope(name, "xw_plus_b_v1", [x, weights, biases]) as name:
x = ops.convert_to_tensor(x, name="x")
weights = ops.convert_to_tensor(weights, name="weights")
biases = ops.convert_to_tensor(biases, name="biases")
mm = math_ops.matmul(x, weights)
return bias_add_v1(mm, biases, name=name)
示例3: _MatMulGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def _MatMulGrad(op, grad):
"""Gradient for MatMul."""
t_a = op.get_attr("transpose_a")
t_b = op.get_attr("transpose_b")
a = math_ops.conj(op.inputs[0])
b = math_ops.conj(op.inputs[1])
if not t_a and not t_b:
grad_a = math_ops.matmul(grad, b, transpose_b=True)
grad_b = math_ops.matmul(a, grad, transpose_a=True)
elif not t_a and t_b:
grad_a = math_ops.matmul(grad, b)
grad_b = math_ops.matmul(grad, a, transpose_a=True)
elif t_a and not t_b:
grad_a = math_ops.matmul(b, grad, transpose_b=True)
grad_b = math_ops.matmul(a, grad)
elif t_a and t_b:
grad_a = math_ops.matmul(b, grad, transpose_a=True, transpose_b=True)
grad_b = math_ops.matmul(grad, a, transpose_a=True, transpose_b=True)
return grad_a, grad_b
示例4: _BatchMatMul
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def _BatchMatMul(op, grad):
"""Returns the gradient of x and y given the gradient of x * y."""
x = op.inputs[0]
y = op.inputs[1]
adj_x = op.get_attr("adj_x")
adj_y = op.get_attr("adj_y")
if not adj_x:
if not adj_y:
grad_x = math_ops.matmul(grad, y, adjoint_a=False, adjoint_b=True)
grad_y = math_ops.matmul(x, grad, adjoint_a=True, adjoint_b=False)
else:
grad_x = math_ops.matmul(grad, y, adjoint_a=False, adjoint_b=False)
grad_y = math_ops.matmul(grad, x, adjoint_a=True, adjoint_b=False)
else:
if not adj_y:
grad_x = math_ops.matmul(y, grad, adjoint_a=False, adjoint_b=True)
grad_y = math_ops.matmul(x, grad, adjoint_a=False, adjoint_b=False)
else:
grad_x = math_ops.matmul(y, grad, adjoint_a=True, adjoint_b=True)
grad_y = math_ops.matmul(grad, x, adjoint_a=True, adjoint_b=True)
return grad_x, grad_y
示例5: _MatrixTriangularSolveGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def _MatrixTriangularSolveGrad(op, grad):
"""Gradient for MatrixTriangularSolve."""
a = op.inputs[0]
adjoint_a = op.get_attr("adjoint")
lower_a = op.get_attr("lower")
c = op.outputs[0]
grad_b = linalg_ops.matrix_triangular_solve(
a, grad, lower=lower_a, adjoint=not adjoint_a)
if adjoint_a:
grad_a = -math_ops.matmul(c, grad_b, adjoint_b=True)
else:
grad_a = -math_ops.matmul(grad_b, c, adjoint_b=True)
if lower_a:
grad_a = array_ops.matrix_band_part(grad_a, -1, 0)
else:
grad_a = array_ops.matrix_band_part(grad_a, 0, -1)
return (grad_a, grad_b)
示例6: relu_layer
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def relu_layer(x, weights, biases, name=None):
"""Computes Relu(x * weight + biases).
Args:
x: a 2D tensor. Dimensions typically: batch, in_units
weights: a 2D tensor. Dimensions typically: in_units, out_units
biases: a 1D tensor. Dimensions: out_units
name: A name for the operation (optional). If not specified
"nn_relu_layer" is used.
Returns:
A 2-D Tensor computing relu(matmul(x, weights) + biases).
Dimensions typically: batch, out_units.
"""
with ops.name_scope(name, "relu_layer", [x, weights, biases]) as name:
x = ops.convert_to_tensor(x, name="x")
weights = ops.convert_to_tensor(weights, name="weights")
biases = ops.convert_to_tensor(biases, name="biases")
xw_plus_b = nn_ops.bias_add(math_ops.matmul(x, weights), biases)
return nn_ops.relu(xw_plus_b, name=name)
示例7: _compute_euclidean_distance
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def _compute_euclidean_distance(cls, inputs, clusters):
"""Computes Euclidean distance between each input and each cluster center.
Args:
inputs: list of input Tensors.
clusters: cluster Tensor.
Returns:
list of Tensors, where each element corresponds to each element in inputs.
The value is the distance of each row to all the cluster centers.
"""
output = []
for inp in inputs:
with ops.colocate_with(inp):
# Computes Euclidean distance. Note the first and third terms are
# broadcast additions.
squared_distance = (math_ops.reduce_sum(
math_ops.square(inp), 1, keep_dims=True) - 2 * math_ops.matmul(
inp, clusters, transpose_b=True) + array_ops.transpose(
math_ops.reduce_sum(
math_ops.square(clusters), 1, keep_dims=True)))
output.append(squared_distance)
return output
示例8: _covariance
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def _covariance(x, diag):
"""Defines the covariance operation of a matrix.
Args:
x: a matrix Tensor. Dimension 0 should contain the number of examples.
diag: if True, it computes the diagonal covariance.
Returns:
A Tensor representing the covariance of x. In the case of
diagonal matrix just the diagonal is returned.
"""
num_points = math_ops.to_float(array_ops.shape(x)[0])
x -= math_ops.reduce_mean(x, 0, keep_dims=True)
if diag:
cov = math_ops.reduce_sum(
math_ops.square(x), 0, keep_dims=True) / (num_points - 1)
else:
cov = math_ops.matmul(x, x, transpose_a=True) / (num_points - 1)
return cov
示例9: _define_diag_covariance_probs
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def _define_diag_covariance_probs(self, shard_id, shard):
"""Defines the diagonal covariance probabilities per example in a class.
Args:
shard_id: id of the current shard.
shard: current data shard, 1 X num_examples X dimensions.
Returns a matrix num_examples * num_classes.
"""
# num_classes X 1
# TODO(xavigonzalvo): look into alternatives to log for
# reparametrization of variance parameters.
det_expanded = math_ops.reduce_sum(
math_ops.log(self._covs + 1e-3), 1, keep_dims=True)
diff = shard - self._means
x2 = math_ops.square(diff)
cov_expanded = array_ops.expand_dims(1.0 / (self._covs + 1e-3), 2)
# num_classes X num_examples
x2_cov = math_ops.matmul(x2, cov_expanded)
x2_cov = array_ops.transpose(array_ops.squeeze(x2_cov, [2]))
self._probs[shard_id] = -0.5 * (
math_ops.to_float(self._dimensions) * math_ops.log(2.0 * np.pi) +
array_ops.transpose(det_expanded) + x2_cov)
示例10: _define_partial_maximization_operation
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def _define_partial_maximization_operation(self, shard_id, shard):
"""Computes the partial statistics of the means and covariances.
Args:
shard_id: current shard id.
shard: current data shard, 1 X num_examples X dimensions.
"""
# Soft assignment of each data point to each of the two clusters.
self._points_in_k[shard_id] = math_ops.reduce_sum(
self._w[shard_id], 0, keep_dims=True)
# Partial means.
w_mul_x = array_ops.expand_dims(
math_ops.matmul(
self._w[shard_id], array_ops.squeeze(shard, [0]), transpose_a=True),
1)
self._w_mul_x.append(w_mul_x)
# Partial covariances.
x = array_ops.concat([shard for _ in range(self._num_classes)], 0)
x_trans = array_ops.transpose(x, perm=[0, 2, 1])
x_mul_w = array_ops.concat([
array_ops.expand_dims(x_trans[k, :, :] * self._w[shard_id][:, k], 0)
for k in range(self._num_classes)
], 0)
self._w_mul_x2.append(math_ops.matmul(x_mul_w, x))
示例11: create_operator
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def create_operator(matrix):
"""Creates a linear operator from a rank-2 tensor."""
linear_operator = collections.namedtuple(
"LinearOperator", ["shape", "dtype", "apply", "apply_adjoint"])
# TODO(rmlarsen): Handle SparseTensor.
shape = matrix.get_shape()
if shape.is_fully_defined():
shape = shape.as_list()
else:
shape = array_ops.shape(matrix)
return linear_operator(
shape=shape,
dtype=matrix.dtype,
apply=lambda v: math_ops.matmul(matrix, v, adjoint_a=False),
apply_adjoint=lambda v: math_ops.matmul(matrix, v, adjoint_a=True))
# TODO(rmlarsen): Measure if we should just call matmul.
示例12: _linear_predictions
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def _linear_predictions(self, examples):
"""Returns predictions of the form w*x."""
with name_scope('sdca/prediction'):
sparse_variables = self._convert_n_to_tensor(self._variables[
'sparse_features_weights'])
result = 0.0
for sfc, sv in zip(examples['sparse_features'], sparse_variables):
# TODO(sibyl-Aix6ihai): following does not take care of missing features.
result += math_ops.segment_sum(
math_ops.multiply(
array_ops.gather(sv, sfc.feature_indices), sfc.feature_values),
sfc.example_indices)
dense_features = self._convert_n_to_tensor(examples['dense_features'])
dense_variables = self._convert_n_to_tensor(self._variables[
'dense_features_weights'])
for i in range(len(dense_variables)):
result += math_ops.matmul(dense_features[i],
array_ops.expand_dims(dense_variables[i], -1))
# Reshaping to allow shape inference at graph construction time.
return array_ops.reshape(result, [-1])
示例13: testSqrtMatmul
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def testSqrtMatmul(self):
# Square roots are not unique, but we should have SS^T x = Ax, and in our
# case, we should have S = S^T, so SSx = Ax.
with self.test_session():
for batch_shape in [(), (
2,
3,)]:
for k in [1, 4]:
operator, mat = self._build_operator_and_mat(batch_shape, k)
# Work with 5 simultaneous systems. 5 is arbitrary.
x = self._rng.randn(*(batch_shape + (k, 5)))
self._compare_results(
expected=math_ops.matmul(mat, x).eval(),
actual=operator.sqrt_matmul(operator.sqrt_matmul(x)))
示例14: sqrt_matmul
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def sqrt_matmul(self, x):
"""Computes `matmul(self, x)`.
Doesn't actually do the sqrt! Named as such to agree with API.
Args:
x: `Tensor`
Returns:
self_times_x: `Tensor`
"""
m_x = math_ops.matmul(self._m, x)
vt_x = math_ops.matmul(self._v, x, adjoint_a=True)
d_vt_x = self._d.matmul(vt_x)
v_d_vt_x = math_ops.matmul(self._v, d_vt_x)
return m_x + v_d_vt_x
示例15: sqrt_solve
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import matmul [as 別名]
def sqrt_solve(self, x):
"""Computes `solve(self, x)`.
Doesn't actually do the sqrt! Named as such to agree with API.
To compute (M + V D V.T), we use the the Woodbury matrix identity:
inv(M + V D V.T) = inv(M) - inv(M) V inv(C) V.T inv(M)
where,
C = inv(D) + V.T inv(M) V.
See: https://en.wikipedia.org/wiki/Woodbury_matrix_identity
Args:
x: `Tensor`
Returns:
inv_of_self_times_x: `Tensor`
"""
minv_x = linalg_ops.matrix_triangular_solve(self._m, x)
vt_minv_x = math_ops.matmul(self._v, minv_x, transpose_a=True)
cinv_vt_minv_x = linalg_ops.matrix_solve(
self._woodbury_sandwiched_term(), vt_minv_x)
v_cinv_vt_minv_x = math_ops.matmul(self._v, cinv_vt_minv_x)
minv_v_cinv_vt_minv_x = linalg_ops.matrix_triangular_solve(
self._m, v_cinv_vt_minv_x)
return minv_x - minv_v_cinv_vt_minv_x