本文整理匯總了Python中tensorflow.python.ops.math_ops.logical_and方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.logical_and方法的具體用法?Python math_ops.logical_and怎麽用?Python math_ops.logical_and使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.logical_and方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _mode
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _mode(self):
mode = (self.concentration1 - 1.) / (self.total_concentration - 2.)
if self.allow_nan_stats:
nan = array_ops.fill(
self.batch_shape_tensor(),
np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
name="nan")
is_defined = math_ops.logical_and(self.concentration1 > 1.,
self.concentration0 > 1.)
return array_ops.where(is_defined, mode, nan)
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones([], dtype=self.dtype),
self.concentration1,
message="Mode undefined for concentration1 <= 1."),
check_ops.assert_less(
array_ops.ones([], dtype=self.dtype),
self.concentration0,
message="Mode undefined for concentration0 <= 1.")
], mode)
示例2: _process_matrix
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _process_matrix(self, matrix, min_rank, event_ndims):
"""Helper to __init__ which gets matrix in batch-ready form."""
# Pad the matrix so that matmul works in the case of a matrix and vector
# input. Keep track if the matrix was padded, to distinguish between a
# rank 3 tensor and a padded rank 2 tensor.
# TODO(srvasude): Remove side-effects from functions. Its currently unbroken
# but error-prone since the function call order may change in the future.
self._rank_two_event_ndims_one = math_ops.logical_and(
math_ops.equal(array_ops.rank(matrix), min_rank),
math_ops.equal(event_ndims, 1))
left = array_ops.where(self._rank_two_event_ndims_one, 1, 0)
pad = array_ops.concat(
[array_ops.ones(
[left], dtype=dtypes.int32), array_ops.shape(matrix)],
0)
return array_ops.reshape(matrix, pad)
示例3: _is_shape
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _is_shape(expected_shape, actual_tensor, actual_shape=None):
"""Returns whether actual_tensor's shape is expected_shape.
Args:
expected_shape: Integer list defining the expected shape, or tensor of same.
actual_tensor: Tensor to test.
actual_shape: Shape of actual_tensor, if we already have it.
Returns:
New tensor.
"""
with ops.name_scope('is_shape', values=[actual_tensor]) as scope:
is_rank = _is_rank(array_ops.size(expected_shape), actual_tensor)
if actual_shape is None:
actual_shape = array_ops.shape(actual_tensor, name='actual')
shape_equal = _all_equal(
ops.convert_to_tensor(expected_shape, name='expected'),
actual_shape)
return math_ops.logical_and(is_rank, shape_equal, name=scope)
示例4: _mode
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _mode(self):
mode = (self.a - 1.)/ (self.a_b_sum - 2.)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
math_ops.logical_and(
math_ops.greater(self.a, 1.),
math_ops.greater(self.b, 1.)),
mode,
array_ops.fill(self.batch_shape(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.a,
message="Mode not defined for components of a <= 1."),
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.b,
message="Mode not defined for components of b <= 1."),
], mode)
示例5: _process_matrix
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _process_matrix(self, matrix, min_rank, event_ndims):
"""Helper to __init__ which gets matrix in batch-ready form."""
# Pad the matrix so that matmul works in the case of a matrix and vector
# input. Keep track if the matrix was padded, to distinguish between a
# rank 3 tensor and a padded rank 2 tensor.
# TODO(srvasude): Remove side-effects from functions. Its currently unbroken
# but error-prone since the function call order may change in the future.
self._rank_two_event_ndims_one = math_ops.logical_and(
math_ops.equal(array_ops.rank(matrix), min_rank),
math_ops.equal(event_ndims, 1))
left = array_ops.where(self._rank_two_event_ndims_one, 1, 0)
pad = array_ops.concat(
[array_ops.ones(
[left], dtype=dtypes.int32), array_ops.shape(matrix)],
0)
return array_ops.reshape(matrix, pad)
示例6: false_negatives
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def false_negatives(labels, predictions, weights=None,
metrics_collections=None,
updates_collections=None,
name=None):
"""Computes the total number of false negatives.
If `weights` is `None`, weights default to 1. Use weights of 0 to mask values.
Args:
labels: The ground truth values, a `Tensor` whose dimensions must match
`predictions`. Will be cast to `bool`.
predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will
be cast to `bool`.
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`labels`, and must be broadcastable to `labels` (i.e., all dimensions must
be either `1`, or the same as the corresponding `labels` dimension).
metrics_collections: An optional list of collections that the metric
value variable should be added to.
updates_collections: An optional list of collections that the metric update
ops should be added to.
name: An optional variable_scope name.
Returns:
value_tensor: A `Tensor` representing the current value of the metric.
update_op: An operation that accumulates the error from a batch of data.
Raises:
ValueError: If `weights` is not `None` and its shape doesn't match `values`,
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(
name, 'false_negatives', (predictions, labels, weights)):
labels = math_ops.cast(labels, dtype=dtypes.bool)
predictions = math_ops.cast(predictions, dtype=dtypes.bool)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
is_false_negative = math_ops.logical_and(math_ops.equal(labels, True),
math_ops.equal(predictions, False))
return _count_condition(is_false_negative, weights, metrics_collections,
updates_collections)
示例7: _logical_and
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _logical_and(*args):
"""Convenience function which attempts to statically `reduce_all`."""
args_ = [_static_value(x) for x in args]
if any(x is not None and not bool(x) for x in args_):
return constant_op.constant(False)
if all(x is not None and bool(x) for x in args_):
return constant_op.constant(True)
if len(args) == 2:
return math_ops.logical_and(*args)
return math_ops.reduce_all(args)
示例8: _check_multiple_of
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _check_multiple_of(value, multiple_of):
"""Checks that value `value` is a non-zero multiple of `multiple_of`.
Args:
value: an int32 scalar Tensor.
multiple_of: an int or int32 scalar Tensor.
Returns:
new_value: an int32 scalar Tensor matching `value`, but which includes an
assertion that `value` is a multiple of `multiple_of`.
"""
assert isinstance(value, ops.Tensor)
with ops.control_dependencies([
control_flow_ops.Assert(
math_ops.logical_and(
math_ops.equal(math_ops.mod(value, multiple_of), 0),
math_ops.not_equal(value, 0)), [
string_ops.string_join([
"Tensor %s should be a multiple of: " % value.name,
string_ops.as_string(multiple_of), ", but saw value: ",
string_ops.as_string(value),
". Consider setting pad=True."
])
])
]):
new_value = array_ops.identity(value, name="multiple_of_checked")
return new_value
示例9: _prune_invalid_ids
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _prune_invalid_ids(sparse_ids, sparse_weights):
"""Prune invalid IDs (< 0) from the input ids and weights."""
is_id_valid = math_ops.greater_equal(sparse_ids.values, 0)
if sparse_weights is not None:
is_id_valid = math_ops.logical_and(
is_id_valid, math_ops.greater(sparse_weights.values, 0))
sparse_ids = sparse_ops.sparse_retain(sparse_ids, is_id_valid)
if sparse_weights is not None:
sparse_weights = sparse_ops.sparse_retain(sparse_weights, is_id_valid)
return sparse_ids, sparse_weights
示例10: false_negatives
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def false_negatives(labels, predictions, weights=None,
metrics_collections=None,
updates_collections=None,
name=None):
"""Computes the total number of false positives.
If `weights` is `None`, weights default to 1. Use weights of 0 to mask values.
Args:
labels: The ground truth values, a `Tensor` whose dimensions must match
`predictions`. Will be cast to `bool`.
predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will
be cast to `bool`.
weights: Optional `Tensor` whose rank is either 0, or the same rank as
`labels`, and must be broadcastable to `labels` (i.e., all dimensions must
be either `1`, or the same as the corresponding `labels` dimension).
metrics_collections: An optional list of collections that the metric
value variable should be added to.
updates_collections: An optional list of collections that the metric update
ops should be added to.
name: An optional variable_scope name.
Returns:
value_tensor: A `Tensor` representing the current value of the metric.
update_op: An operation that accumulates the error from a batch of data.
Raises:
ValueError: If `weights` is not `None` and its shape doesn't match `values`,
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(
name, 'false_negatives', (predictions, labels, weights)):
labels = math_ops.cast(labels, dtype=dtypes.bool)
predictions = math_ops.cast(predictions, dtype=dtypes.bool)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
is_false_negative = math_ops.logical_and(math_ops.equal(labels, True),
math_ops.equal(predictions, False))
return _count_condition(is_false_negative, weights, metrics_collections,
updates_collections)
示例11: __and__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def __and__(self, other):
return logical_and(self, other)
示例12: should_stop
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def should_stop(scalar_stopping_signal):
"""Detects whether scalar_stopping_signal indicates stopping."""
if isinstance(scalar_stopping_signal, ops.Tensor):
# STOPPING_SIGNAL is a constant True. Here, the logical_and is just the TF
# way to express the bool check whether scalar_stopping_signal is True.
return math_ops.logical_and(scalar_stopping_signal,
_StopSignals.STOPPING_SIGNAL)
else:
# For non Tensor case, it is used in SessionRunHook. So, we cannot modify
# the graph anymore. Here, we use pure Python.
return bool(scalar_stopping_signal)
示例13: _streaming_true_positives
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _streaming_true_positives(predictions, labels, weights=None,
metrics_collections=None,
updates_collections=None,
name=None):
"""Sum the weights of true_positives.
If `weights` is `None`, weights default to 1. Use weights of 0 to mask values.
Args:
predictions: The predicted values, a `bool` `Tensor` of arbitrary
dimensions.
labels: The ground truth values, a `bool` `Tensor` whose dimensions must
match `predictions`.
weights: An optional `Tensor` whose shape is broadcastable to `predictions`.
metrics_collections: An optional list of collections that the metric
value variable should be added to.
updates_collections: An optional list of collections that the metric update
ops should be added to.
name: An optional variable_scope name.
Returns:
value_tensor: A tensor representing the current value of the metric.
update_op: An operation that accumulates the error from a batch of data.
Raises:
ValueError: If `predictions` and `labels` have mismatched shapes, or if
`weights` is not `None` and its shape doesn't match `predictions`, or if
either `metrics_collections` or `updates_collections` are not a list or
tuple.
"""
with variable_scope.variable_scope(
name, 'true_positives', [predictions, labels]):
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
is_true_positive = math_ops.logical_and(math_ops.equal(labels, 1),
math_ops.equal(predictions, 1))
return _count_condition(is_true_positive, weights, metrics_collections,
updates_collections)
示例14: _streaming_false_positives
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _streaming_false_positives(predictions, labels, weights=None,
metrics_collections=None,
updates_collections=None,
name=None):
"""Sum the weights of false positives.
If `weights` is `None`, weights default to 1. Use weights of 0 to mask values.
Args:
predictions: The predicted values, a `bool` `Tensor` of arbitrary
dimensions.
labels: The ground truth values, a `bool` `Tensor` whose dimensions must
match `predictions`.
weights: An optional `Tensor` whose shape is broadcastable to `predictions`.
metrics_collections: An optional list of collections that the metric
value variable should be added to.
updates_collections: An optional list of collections that the metric update
ops should be added to.
name: An optional variable_scope name.
Returns:
value_tensor: A tensor representing the current value of the metric.
update_op: An operation that accumulates the error from a batch of data.
Raises:
ValueError: If `predictions` and `labels` have mismatched shapes, or if
`weights` is not `None` and its shape doesn't match `predictions`, or if
either `metrics_collections` or `updates_collections` are not a list or
tuple.
"""
with variable_scope.variable_scope(
name, 'false_positives', [predictions, labels]):
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
is_false_positive = math_ops.logical_and(math_ops.equal(labels, 0),
math_ops.equal(predictions, 1))
return _count_condition(is_false_positive, weights, metrics_collections,
updates_collections)
示例15: _streaming_false_negatives
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import logical_and [as 別名]
def _streaming_false_negatives(predictions, labels, weights=None,
metrics_collections=None,
updates_collections=None,
name=None):
"""Computes the total number of false positives.
If `weights` is `None`, weights default to 1. Use weights of 0 to mask values.
Args:
predictions: The predicted values, a `bool` `Tensor` of arbitrary
dimensions.
labels: The ground truth values, a `bool` `Tensor` whose dimensions must
match `predictions`.
weights: An optional `Tensor` whose shape is broadcastable to `predictions`.
metrics_collections: An optional list of collections that the metric
value variable should be added to.
updates_collections: An optional list of collections that the metric update
ops should be added to.
name: An optional variable_scope name.
Returns:
value_tensor: A tensor representing the current value of the metric.
update_op: An operation that accumulates the error from a batch of data.
Raises:
ValueError: If `weights` is not `None` and its shape doesn't match `values`,
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(
name, 'false_negatives', [predictions, labels]):
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
is_false_negative = math_ops.logical_and(math_ops.equal(labels, 1),
math_ops.equal(predictions, 0))
return _count_condition(is_false_negative, weights, metrics_collections,
updates_collections)