當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.log方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.log方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.log方法的具體用法?Python math_ops.log怎麽用?Python math_ops.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.log方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: binary_crossentropy

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def binary_crossentropy(output, target, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.

  Arguments:
      output: A tensor.
      target: A tensor with the same shape as `output`.
      from_logits: Whether `output` is expected to be a logits tensor.
          By default, we consider that `output`
          encodes a probability distribution.

  Returns:
      A tensor.
  """
  # Note: nn.softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # transform back to logits
    epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon, 1 - epsilon)
    output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:backend.py

示例2: _kl_gamma_gamma

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _kl_gamma_gamma(g0, g1, name=None):
  """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma.

  Args:
    g0: instance of a Gamma distribution object.
    g1: instance of a Gamma distribution object.
    name: (optional) Name to use for created operations.
      Default is "kl_gamma_gamma".

  Returns:
    kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
  """
  with ops.name_scope(name, "kl_gamma_gamma", values=[
      g0.concentration, g0.rate, g1.concentration, g1.rate]):
    # Result from:
    #   http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
    # For derivation see:
    #   http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions   pylint: disable=line-too-long
    return (((g0.concentration - g1.concentration)
             * math_ops.digamma(g0.concentration))
            + math_ops.lgamma(g1.concentration)
            - math_ops.lgamma(g0.concentration)
            + g1.concentration * math_ops.log(g0.rate)
            - g1.concentration * math_ops.log(g1.rate)
            + g0.concentration * (g1.rate / g0.rate - 1.)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:gamma.py

示例3: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _sample_n(self, n, seed=None):
    shape = array_ops.concat([[n], array_ops.shape(self._rate)], 0)
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    sampled = random_ops.random_uniform(
        shape,
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        seed=seed,
        dtype=self.dtype)
    return -math_ops.log(sampled) / self._rate 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:exponential.py

示例4: log_survival_function

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def log_survival_function(self, value, name="log_survival_function"):
    """Log survival function.

    Given random variable `X`, the survival function is defined:

    ```none
    log_survival_function(x) = Log[ P[X > x] ]
                             = Log[ 1 - P[X <= x] ]
                             = Log[ 1 - cdf(x) ]
    ```

    Typically, different numerical approximations can be used for the log
    survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`.

    Args:
      value: `float` or `double` `Tensor`.
      name: The name to give this op.

    Returns:
      `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type
        `self.dtype`.
    """
    return self._call_log_survival_function(value, name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:distribution.py

示例5: inverse_log_det_jacobian

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def inverse_log_det_jacobian(self, y, name="inverse_log_det_jacobian"):
    """Returns the (log o det o Jacobian o inverse)(y).

    Mathematically, returns: `log(det(dX/dY))(Y)`. (Recall that: `X=g^{-1}(Y)`.)

    Note that `forward_log_det_jacobian` is the negative of this function.

    Args:
      y: `Tensor`. The input to the "inverse" Jacobian evaluation.
      name: The name to give this op.

    Returns:
      `Tensor`.

    Raises:
      TypeError: if `self.dtype` is specified and `y.dtype` is not
        `self.dtype`.
      NotImplementedError: if `_inverse_log_det_jacobian` is not implemented.
    """
    return self._call_inverse_log_det_jacobian(y, name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:bijector_impl.py

示例6: _kl_normal_normal

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _kl_normal_normal(n_a, n_b, name=None):
  """Calculate the batched KL divergence KL(n_a || n_b) with n_a and n_b Normal.

  Args:
    n_a: instance of a Normal distribution object.
    n_b: instance of a Normal distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_normal_normal".

  Returns:
    Batchwise KL(n_a || n_b)
  """
  with ops.name_scope(name, "kl_normal_normal", [n_a.loc, n_b.loc]):
    one = constant_op.constant(1, dtype=n_a.dtype)
    two = constant_op.constant(2, dtype=n_a.dtype)
    half = constant_op.constant(0.5, dtype=n_a.dtype)
    s_a_squared = math_ops.square(n_a.scale)
    s_b_squared = math_ops.square(n_b.scale)
    ratio = s_a_squared / s_b_squared
    return (math_ops.square(n_a.loc - n_b.loc) / (two * s_b_squared) +
            half * (ratio - one - math_ops.log(ratio))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:normal.py

示例7: _PowGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = array_ops.where(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:math_grad.py

示例8: _define_diag_covariance_probs

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _define_diag_covariance_probs(self, shard_id, shard):
    """Defines the diagonal covariance probabilities per example in a class.

    Args:
      shard_id: id of the current shard.
      shard: current data shard, 1 X num_examples X dimensions.

    Returns a matrix num_examples * num_classes.
    """
    # num_classes X 1
    # TODO(xavigonzalvo): look into alternatives to log for
    # reparametrization of variance parameters.
    det_expanded = math_ops.reduce_sum(
        math_ops.log(self._covs + 1e-3), 1, keep_dims=True)
    diff = shard - self._means
    x2 = math_ops.square(diff)
    cov_expanded = array_ops.expand_dims(1.0 / (self._covs + 1e-3), 2)
    # num_classes X num_examples
    x2_cov = math_ops.matmul(x2, cov_expanded)
    x2_cov = array_ops.transpose(array_ops.squeeze(x2_cov, [2]))
    self._probs[shard_id] = -0.5 * (
        math_ops.to_float(self._dimensions) * math_ops.log(2.0 * np.pi) +
        array_ops.transpose(det_expanded) + x2_cov) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:gmm_ops.py

示例9: _define_log_prob_operation

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _define_log_prob_operation(self, shard_id, shard):
    """Probability per example in a class.

    Updates a matrix with dimension num_examples X num_classes.

    Args:
      shard_id: id of the current shard.
      shard: current data shard, 1 X num_examples X dimensions.
    """
    # TODO(xavigonzalvo): Use the pdf defined in
    # third_party/tensorflow/contrib/distributions/python/ops/gaussian.py
    if self._covariance_type == FULL_COVARIANCE:
      self._define_full_covariance_probs(shard_id, shard)
    elif self._covariance_type == DIAG_COVARIANCE:
      self._define_diag_covariance_probs(shard_id, shard)
    self._probs[shard_id] += math_ops.log(self._alpha) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:gmm_ops.py

示例10: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _sample_n(self, n, seed=None):
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    uniform = random_ops.random_uniform(
        shape=array_ops.concat([[n], self.batch_shape_tensor()], 0),
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    sampled = math_ops.log(uniform) - math_ops.log1p(-1. * uniform)
    return sampled * self.scale + self.loc 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:logistic.py

示例11: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _sample_n(self, n, seed=None):
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    sampled = random_ops.random_uniform(
        array_ops.concat([[n], array_ops.shape(self._probs)], 0),
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        seed=seed,
        dtype=self.dtype)

    return math_ops.floor(
        math_ops.log(sampled) / math_ops.log1p(-self.probs)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:geometric.py

示例12: _log_prob_with_logsf_and_logcdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _log_prob_with_logsf_and_logcdf(self, y):
    """Compute log_prob(y) using log survival_function and cdf together."""
    # There are two options that would be equal if we had infinite precision:
    # Log[ sf(y - 1) - sf(y) ]
    #   = Log[ exp{logsf(y - 1)} - exp{logsf(y)} ]
    # Log[ cdf(y) - cdf(y - 1) ]
    #   = Log[ exp{logcdf(y)} - exp{logcdf(y - 1)} ]
    logsf_y = self.log_survival_function(y)
    logsf_y_minus_1 = self.log_survival_function(y - 1)
    logcdf_y = self.log_cdf(y)
    logcdf_y_minus_1 = self.log_cdf(y - 1)

    # Important:  Here we use select in a way such that no input is inf, this
    # prevents the troublesome case where the output of select can be finite,
    # but the output of grad(select) will be NaN.

    # In either case, we are doing Log[ exp{big} - exp{small} ]
    # We want to use the sf items precisely when we are on the right side of the
    # median, which occurs when logsf_y < logcdf_y.
    big = array_ops.where(logsf_y < logcdf_y, logsf_y_minus_1, logcdf_y)
    small = array_ops.where(logsf_y < logcdf_y, logsf_y, logcdf_y_minus_1)

    return _logsum_expbig_minus_expsmall(big, small) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:quantized_distribution.py

示例13: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _sample_n(self, n, seed=None):
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    uniform = random_ops.random_uniform(
        shape=array_ops.concat([[n], self.batch_shape_tensor()], 0),
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    sampled = -math_ops.log(-math_ops.log(uniform))
    return sampled * self.scale + self.loc 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:gumbel.py

示例14: sqrt_log_abs_det

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def sqrt_log_abs_det(self):
    """Computes (log o abs o det)(X) for matrix X.

    Doesn't actually do the sqrt! Named as such to agree with API.

    To compute det(M + V D V.T), we use the matrix determinant lemma:
      det(Tril + V D V.T) = det(C) det(D) det(M)
    where C is defined as in `_inverse`, ie,
      C = inv(D) + V.T inv(M) V.

    See: https://en.wikipedia.org/wiki/Matrix_determinant_lemma

    Returns:
      log_abs_det: `Tensor`.
    """
    log_det_c = math_ops.log(math_ops.abs(
        linalg_ops.matrix_determinant(self._woodbury_sandwiched_term())))
    # Reduction is ok because we always prepad inputs to this class.
    log_det_m = math_ops.reduce_sum(math_ops.log(math_ops.abs(
        array_ops.matrix_diag_part(self._m))), axis=[-1])
    return log_det_c + 2. * self._d.sqrt_log_abs_det() + log_det_m 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:affine_impl.py

示例15: _inverse_log_det_jacobian

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import log [as 別名]
def _inverse_log_det_jacobian(self, y):
    # WLOG, consider the vector case:
    #   x = log(y[:-1]) - log(y[-1])
    # where,
    #   y[-1] = 1 - sum(y[:-1]).
    # We have:
    #   det{ dX/dY } = det{ diag(1 ./ y[:-1]) + 1 / y[-1] }
    #                = det{ inv{ diag(y[:-1]) - y[:-1]' y[:-1] } }   (1)
    #                = 1 / det{ diag(y[:-1]) - y[:-1]' y[:-1] }
    #                = 1 / { (1 + y[:-1]' inv(diag(y[:-1])) y[:-1]) *
    #                        det(diag(y[:-1])) }                     (2)
    #                = 1 / { y[-1] prod(y[:-1]) }
    #                = 1 / prod(y)
    # (1) - https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
    #       or by noting that det{ dX/dY } = 1 / det{ dY/dX } from Bijector
    #       docstring "Tip".
    # (2) - https://en.wikipedia.org/wiki/Matrix_determinant_lemma
    return -math_ops.reduce_sum(math_ops.log(y), axis=-1) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:softmax_centered_impl.py


注:本文中的tensorflow.python.ops.math_ops.log方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。