本文整理匯總了Python中tensorflow.python.ops.math_ops.lgamma方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.lgamma方法的具體用法?Python math_ops.lgamma怎麽用?Python math_ops.lgamma使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.lgamma方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _kl_gamma_gamma
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _kl_gamma_gamma(g0, g1, name=None):
"""Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma.
Args:
g0: instance of a Gamma distribution object.
g1: instance of a Gamma distribution object.
name: (optional) Name to use for created operations.
Default is "kl_gamma_gamma".
Returns:
kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
"""
with ops.name_scope(name, "kl_gamma_gamma", values=[
g0.concentration, g0.rate, g1.concentration, g1.rate]):
# Result from:
# http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
# For derivation see:
# http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions pylint: disable=line-too-long
return (((g0.concentration - g1.concentration)
* math_ops.digamma(g0.concentration))
+ math_ops.lgamma(g1.concentration)
- math_ops.lgamma(g0.concentration)
+ g1.concentration * math_ops.log(g0.rate)
- g1.concentration * math_ops.log(g1.rate)
+ g0.concentration * (g1.rate / g0.rate - 1.))
示例2: _BetaincGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _BetaincGrad(op, grad):
"""Returns gradient of betainc(a, b, x) with respect to x."""
# TODO(ebrevdo): Perhaps add the derivative w.r.t. a, b
a, b, x = op.inputs
# two cases: x is a scalar and a/b are same-shaped tensors, or vice
# versa; so its sufficient to check against shape(a).
sa = array_ops.shape(a)
sx = array_ops.shape(x)
# pylint: disable=protected-access
_, rx = gen_array_ops._broadcast_gradient_args(sa, sx)
# pylint: enable=protected-access
# Perform operations in log space before summing, because terms
# can grow large.
log_beta = (gen_math_ops.lgamma(a) + gen_math_ops.lgamma(b)
- gen_math_ops.lgamma(a + b))
partial_x = math_ops.exp(
(b - 1) * math_ops.log(1 - x) + (a - 1) * math_ops.log(x) - log_beta)
# TODO(b/36815900): Mark None return values as NotImplemented
return (None, # da
None, # db
array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx))
示例3: _log_prob
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _log_prob(self, x):
x = self._assert_valid_sample(x)
# broadcast logits or x if need be.
logits = self.logits
if (not x.get_shape().is_fully_defined() or
not logits.get_shape().is_fully_defined() or
x.get_shape() != logits.get_shape()):
logits = array_ops.ones_like(x, dtype=logits.dtype) * logits
x = array_ops.ones_like(logits, dtype=x.dtype) * x
logits_shape = array_ops.shape(math_ops.reduce_sum(logits, axis=[-1]))
logits_2d = array_ops.reshape(logits, [-1, self.event_size])
x_2d = array_ops.reshape(x, [-1, self.event_size])
# compute the normalization constant
k = math_ops.cast(self.event_size, x.dtype)
log_norm_const = (math_ops.lgamma(k)
+ (k - 1.)
* math_ops.log(self.temperature))
# compute the unnormalized density
log_softmax = nn_ops.log_softmax(logits_2d - x_2d * self._temperature_2d)
log_unnorm_prob = math_ops.reduce_sum(log_softmax, [-1], keep_dims=False)
# combine unnormalized density with normalization constant
log_prob = log_norm_const + log_unnorm_prob
# Reshapes log_prob to be consistent with shape of user-supplied logits
ret = array_ops.reshape(log_prob, logits_shape)
return ret
示例4: _kl_gamma_gamma
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _kl_gamma_gamma(g0, g1, name=None):
"""Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma.
Args:
g0: instance of a Gamma distribution object.
g1: instance of a Gamma distribution object.
name: (optional) Name to use for created operations.
Default is "kl_gamma_gamma".
Returns:
kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
"""
with ops.name_scope(name, "kl_gamma_gamma",
values=[g0.alpha, g0.beta, g1.alpha, g1.beta]):
# Result from:
# http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
# For derivation see:
# http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions pylint: disable=line-too-long
return ((g0.alpha - g1.alpha) * math_ops.digamma(g0.alpha)
+ math_ops.lgamma(g1.alpha)
- math_ops.lgamma(g0.alpha)
+ g1.alpha * math_ops.log(g0.beta)
- g1.alpha * math_ops.log(g1.beta)
+ g0.alpha * (g1.beta / g0.beta - 1.))
示例5: _kl_beta_beta
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _kl_beta_beta(d1, d2, name=None):
"""Calculate the batched KL divergence KL(d1 || d2) with d1 and d2 Beta.
Args:
d1: instance of a Beta distribution object.
d2: instance of a Beta distribution object.
name: (optional) Name to use for created operations.
default is "kl_beta_beta".
Returns:
Batchwise KL(d1 || d2)
"""
inputs = [d1.a, d1.b, d1.a_b_sum, d2.a_b_sum]
with ops.name_scope(name, "kl_beta_beta", inputs):
# ln(B(a', b') / B(a, b))
log_betas = (math_ops.lgamma(d2.a) + math_ops.lgamma(d2.b)
- math_ops.lgamma(d2.a_b_sum) + math_ops.lgamma(d1.a_b_sum)
- math_ops.lgamma(d1.a) - math_ops.lgamma(d1.b))
# (a - a')*psi(a) + (b - b')*psi(b) + (a' - a + b' - b)*psi(a + b)
digammas = ((d1.a - d2.a)*math_ops.digamma(d1.a)
+ (d1.b - d2.b)*math_ops.digamma(d1.b)
+ (d2.a_b_sum - d1.a_b_sum)*math_ops.digamma(d1.a_b_sum))
return log_betas + digammas
示例6: _IgammaGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _IgammaGrad(op, grad):
"""Returns gradient of igamma(a, x) with respect to x."""
# TODO(ebrevdo): Perhaps add the derivative w.r.t. a
a = op.inputs[0]
x = op.inputs[1]
sa = array_ops.shape(a)
sx = array_ops.shape(x)
# pylint: disable=protected-access
unused_ra, rx = gen_array_ops._broadcast_gradient_args(sa, sx)
# pylint: enable=protected-access
# Perform operations in log space before summing, because Gamma(a)
# and Gamma'(a) can grow large.
partial_x = math_ops.exp(-x + (a - 1) * math_ops.log(x) - math_ops.lgamma(a))
# TODO(b/36815900): Mark None return values as NotImplemented
return (None,
array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx))
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:19,代碼來源:math_grad.py
示例7: _log_normalization
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _log_normalization(self):
return (math_ops.lgamma(self.concentration)
- self.concentration * math_ops.log(self.rate))
示例8: _entropy
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _entropy(self):
return (self.concentration
- math_ops.log(self.rate)
+ math_ops.lgamma(self.concentration)
+ ((1. - self.concentration) *
math_ops.digamma(self.concentration)))
示例9: log_combinations
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def log_combinations(n, counts, name="log_combinations"):
"""Multinomial coefficient.
Given `n` and `counts`, where `counts` has last dimension `k`, we compute
the multinomial coefficient as:
```n! / sum_i n_i!```
where `i` runs over all `k` classes.
Args:
n: Floating-point `Tensor` broadcastable with `counts`. This represents `n`
outcomes.
counts: Floating-point `Tensor` broadcastable with `n`. This represents
counts in `k` classes, where `k` is the last dimension of the tensor.
name: A name for this operation (optional).
Returns:
`Tensor` representing the multinomial coefficient between `n` and `counts`.
"""
# First a bit about the number of ways counts could have come in:
# E.g. if counts = [1, 2], then this is 3 choose 2.
# In general, this is (sum counts)! / sum(counts!)
# The sum should be along the last dimension of counts. This is the
# "distribution" dimension. Here n a priori represents the sum of counts.
with ops.name_scope(name, values=[n, counts]):
n = ops.convert_to_tensor(n, name="n")
counts = ops.convert_to_tensor(counts, name="counts")
total_permutations = math_ops.lgamma(n + 1)
counts_factorial = math_ops.lgamma(counts + 1)
redundant_permutations = math_ops.reduce_sum(counts_factorial, axis=[-1])
return total_permutations - redundant_permutations
示例10: _log_normalization
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _log_normalization(self):
return (math_ops.log(math_ops.abs(self.scale)) +
0.5 * math_ops.log(self.df) +
0.5 * np.log(np.pi) +
math_ops.lgamma(0.5 * self.df) -
math_ops.lgamma(0.5 * (self.df + 1.)))
示例11: _IgammaGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _IgammaGrad(op, grad):
"""Returns gradient of igamma(a, x) with respect to x."""
# TODO(ebrevdo): Perhaps add the derivative w.r.t. a
a = op.inputs[0]
x = op.inputs[1]
sa = array_ops.shape(a)
sx = array_ops.shape(x)
unused_ra, rx = gen_array_ops._broadcast_gradient_args(sa, sx)
# Perform operations in log space before summing, because Gamma(a)
# and Gamma'(a) can grow large.
partial_x = math_ops.exp(-x + (a - 1) * math_ops.log(x) - math_ops.lgamma(a))
# TODO(b/36815900): Mark None return values as NotImplemented
return (None,
array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx))
示例12: _entropy
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _entropy(self):
return (self.concentration
+ math_ops.log(self.rate)
+ math_ops.lgamma(self.concentration)
- ((1. + self.concentration) *
math_ops.digamma(self.concentration)))
示例13: _log_normalization
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _log_normalization(self, counts):
counts = self._maybe_assert_valid_sample(counts)
return (math_ops.lgamma(1. + self.total_count - counts)
+ math_ops.lgamma(1. + counts)
- math_ops.lgamma(1. + self.total_count))
示例14: _log_normalization
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _log_normalization(self, positive_counts):
if self.validate_args:
positive_counts = distribution_util.embed_check_nonnegative_discrete(
positive_counts, check_integer=True)
return (-math_ops.lgamma(self.total_count + positive_counts)
+ math_ops.lgamma(positive_counts + 1.)
+ math_ops.lgamma(self.total_count))
示例15: _IgammaGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import lgamma [as 別名]
def _IgammaGrad(op, grad):
"""Returns gradient of igamma(a, x) with respect to a and x."""
# TODO(ebrevdo): Perhaps add the derivative w.r.t. a
a = op.inputs[0]
x = op.inputs[1]
sa = array_ops.shape(a)
sx = array_ops.shape(x)
unused_ra, rx = gen_array_ops._broadcast_gradient_args(sa, sx)
# Perform operations in log space before summing, because Gamma(a)
# and Gamma'(a) can grow large.
partial_x = math_ops.exp(-x + (a - 1) * math_ops.log(x) - math_ops.lgamma(a))
return (None,
array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx))