當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.less_equal方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.less_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.less_equal方法的具體用法?Python math_ops.less_equal怎麽用?Python math_ops.less_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.less_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def __init__(self, label_name, weight_column_name):

    def loss_fn(logits, target):
      check_shape_op = control_flow_ops.Assert(
          math_ops.less_equal(array_ops.rank(target), 2),
          ["target's shape should be either [batch_size, 1] or [batch_size]"])
      with ops.control_dependencies([check_shape_op]):
        target = array_ops.reshape(
            target, shape=[array_ops.shape(target)[0], 1])
      return loss_ops.hinge_loss(logits, target)

    super(_BinarySvmTargetColumn, self).__init__(
        loss_fn=loss_fn,
        n_classes=2,
        label_name=label_name,
        weight_column_name=weight_column_name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:target_column.py

示例2: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def __init__(self, label_name, weight_column_name, enable_centered_bias,
               head_name, thresholds):
    def loss_fn(logits, labels):
      check_shape_op = control_flow_ops.Assert(
          math_ops.less_equal(array_ops.rank(labels), 2),
          ["labels shape should be either [batch_size, 1] or [batch_size]"])
      with ops.control_dependencies([check_shape_op]):
        labels = array_ops.reshape(
            labels, shape=[array_ops.shape(labels)[0], 1])
      return losses.hinge_loss(logits, labels)

    super(_BinarySvmHead, self).__init__(
        train_loss_fn=loss_fn,
        eval_loss_fn=loss_fn,
        n_classes=2,
        label_name=label_name,
        weight_column_name=weight_column_name,
        enable_centered_bias=enable_centered_bias,
        head_name=head_name,
        thresholds=thresholds) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:head.py

示例3: _MinimumGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def _MinimumGrad(op, grad):
  """Returns grad*(x < y, x >= y) with type of grad."""
  return _MaximumMinimumGrad(op, grad, math_ops.less_equal) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:math_grad.py

示例4: less_equal

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def less_equal(x, y):
  """Element-wise truth value of (x <= y).

  Arguments:
      x: Tensor or variable.
      y: Tensor or variable.

  Returns:
      A bool tensor.
  """
  return math_ops.less_equal(x, y) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:13,代碼來源:backend.py

示例5: _assert_labels_rank

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def _assert_labels_rank(labels):
  return control_flow_ops.Assert(
      math_ops.less_equal(array_ops.rank(labels), 2),
      ("labels shape should be either [batch_size, 1] or [batch_size]",)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:6,代碼來源:head.py

示例6: __le__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def __le__(self, other):
    return less_equal(self, other) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:core.py

示例7: setUp

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def setUp(self):
    super(CoreBinaryOpsTest, self).setUp()

    self.x_probs_broadcast_tensor = array_ops.reshape(
        self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])

    self.channel_probs_broadcast_tensor = array_ops.reshape(
        self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])

    # == and != are not element-wise for tf.Tensor, so they shouldn't be
    # elementwise for LabeledTensor, either.
    self.ops = [
        ('add', operator.add, math_ops.add, core.add),
        ('sub', operator.sub, math_ops.subtract, core.sub),
        ('mul', operator.mul, math_ops.multiply, core.mul),
        ('div', operator.truediv, math_ops.div, core.div),
        ('mod', operator.mod, math_ops.mod, core.mod),
        ('pow', operator.pow, math_ops.pow, core.pow_function),
        ('equal', None, math_ops.equal, core.equal),
        ('less', operator.lt, math_ops.less, core.less),
        ('less_equal', operator.le, math_ops.less_equal, core.less_equal),
        ('not_equal', None, math_ops.not_equal, core.not_equal),
        ('greater', operator.gt, math_ops.greater, core.greater),
        ('greater_equal', operator.ge, math_ops.greater_equal,
         core.greater_equal),
    ]
    self.test_lt_1 = self.x_probs_lt
    self.test_lt_2 = self.channel_probs_lt
    self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
    self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
    self.broadcast_axes = [self.a0, self.a1, self.a3] 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:33,代碼來源:core_test.py

示例8: test_forward_rel_ops

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def test_forward_rel_ops():
    t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
    _test_forward_rel_op([t1, t2], math_ops.less)
    _test_forward_rel_op([t1, t2], math_ops.greater)
    _test_forward_rel_op([t1, t2], math_ops.less_equal)
    _test_forward_rel_op([t1, t2], math_ops.greater_equal)
    _test_forward_rel_op([t1, t2], math_ops.equal)
    _test_forward_rel_op([t1, t2], math_ops.not_equal)


#######################################################################
# Main
# ---- 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:16,代碼來源:test_forward.py

示例9: _reshape_labels

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def _reshape_labels(labels):
  """"Reshapes labels into [batch_size, 1] to be compatible with logits."""
  check_shape_op = control_flow_ops.Assert(
      math_ops.less_equal(array_ops.rank(labels), 2),
      ["labels shape should be either [batch_size, 1] or [batch_size]"])
  with ops.control_dependencies([check_shape_op]):
    labels = array_ops.reshape(labels,
                               shape=[array_ops.shape(labels)[0], 1])

  return labels 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:dnn.py

示例10: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def __init__(self, label_name, weight_column_name):
    def loss_fn(logits, target):
      check_shape_op = control_flow_ops.Assert(
          math_ops.less_equal(array_ops.rank(target), 2),
          ["target's shape should be either [batch_size, 1] or [batch_size]"])
      with ops.control_dependencies([check_shape_op]):
        target = array_ops.reshape(
            target, shape=[array_ops.shape(target)[0], 1])
      return losses.hinge_loss(logits, target)

    super(_BinarySvmTargetColumn, self).__init__(
        loss_fn=loss_fn,
        n_classes=2,
        label_name=label_name,
        weight_column_name=weight_column_name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:17,代碼來源:target_column.py

示例11: is_mask_update_iter

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def is_mask_update_iter(self, global_step, last_update_step):
    """Function for checking if the current step is a mask update step.

    It also creates the drop_fraction op and assigns it to the self object.

    Args:
      global_step: tf.Variable(int), current training step.
      last_update_step: tf.Variable(int), holding the last iteration the mask
        is updated. Used to determine whether current iteration is a mask
        update step.


    Returns:
      bool, whether the current iteration is a mask_update step.
    """
    gs_dtype = global_step.dtype
    self._begin_step = math_ops.cast(self._begin_step, gs_dtype)
    self._end_step = math_ops.cast(self._end_step, gs_dtype)
    self._frequency = math_ops.cast(self._frequency, gs_dtype)
    is_step_within_update_range = math_ops.logical_and(
        math_ops.greater_equal(global_step, self._begin_step),
        math_ops.logical_or(
            math_ops.less_equal(global_step, self._end_step),
            # If _end_step is negative, we never stop updating the mask.
            # In other words we update the mask with given frequency until the
            # training ends.
            math_ops.less(self._end_step, 0)))
    is_update_step = math_ops.less_equal(
        math_ops.add(last_update_step, self._frequency), global_step)
    is_mask_update_iter_op = math_ops.logical_and(
        is_step_within_update_range, is_update_step)
    self.drop_fraction = self.get_drop_fraction(global_step,
                                                is_mask_update_iter_op)
    return is_mask_update_iter_op 
開發者ID:google-research,項目名稱:rigl,代碼行數:36,代碼來源:sparse_optimizers.py

示例12: set_up_train

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def set_up_train(self, pretrain=False):
        self.logger.info("Model setting up train starts")

        decay_func = DECAY_DICT[self.args.dtype]
        if hasattr(self, 'start_epoch'):
            self.logger.info("Current start epoch : {}".format(self.start_epoch))
            DECAY_PARAMS_DICT[self.args.hdtype][self.args.nbatch][self.args.hdptype]['initial_step'] = self.nbatch_train*self.start_epoch
        self.lr, update_step_op = decay_func(**DECAY_PARAMS_DICT[self.args.dtype][self.args.nbatch][self.args.dptype])

        print(vars_info_vl(tf.trainable_variables()))
        update_ops = tf.get_collection("update_ops")

        with tf.control_dependencies(update_ops+[update_step_op]):
            self.train_op = get_multi_train_op(tf.train.AdamOptimizer, self.loss, [self.lr], [tf.trainable_variables()])

        self.graph_ops_dict = {'train' : [self.train_op, self.loss], 'val' : self.loss, 'test' : self.loss}
        self.val_embed_tensor1 = tf.placeholder(tf.float32, shape=[self.args.nbatch, self.args.m])
        self.val_embed_tensor2 = tf.placeholder(tf.float32, shape=[self.nval, self.args.m])

        self.p_dist = math_ops.add(
                    math_ops.reduce_sum(math_ops.square(self.val_embed_tensor1), axis=[1], keep_dims=True),
                    math_ops.reduce_sum(math_ops.square(array_ops.transpose(self.val_embed_tensor2)), axis=[0], keep_dims=True))-\
                2.0 * math_ops.matmul(self.val_embed_tensor1, array_ops.transpose(self.val_embed_tensor2)) # [batch_size, 1], [1, ndata],  [batch_size, ndata]

        self.p_dist = math_ops.maximum(self.p_dist, 0.0) # [batch_size, ndata] 
        self.p_dist = math_ops.multiply(self.p_dist, math_ops.to_float(math_ops.logical_not(math_ops.less_equal(self.p_dist, 0.0))))
        self.p_max_idx = tf.nn.top_k(-self.p_dist, k=2)[1] # [batch_size, 2] # get smallest 2

        self.logger.info("Model setting up train ends") 
開發者ID:maestrojeong,項目名稱:Deep-Hash-Table-ICML18,代碼行數:31,代碼來源:deepmetric.py

示例13: set_up_train

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def set_up_train(self):
        self.logger.info("Model setting up train starts")

        decay_func = DECAY_DICT[self.args.dtype]
        if hasattr(self, 'start_epoch'):
            self.logger.info("Current start epoch : {}".format(self.start_epoch))
            DECAY_PARAMS_DICT[self.args.hdtype][self.args.nbatch][self.args.hdptype]['initial_step'] = self.nbatch_train*self.start_epoch
        self.lr, update_step_op = decay_func(**DECAY_PARAMS_DICT[self.args.dtype][self.args.nbatch][self.args.dptype])

        print(vars_info_vl(tf.trainable_variables()))
        update_ops = tf.get_collection("update_ops")
        with tf.control_dependencies(update_ops+[update_step_op]):
            self.train_op = get_multi_train_op(tf.train.AdamOptimizer, self.loss, [self.lr], [tf.trainable_variables()])

        self.graph_ops_dict = {'train' : [self.train_op, self.loss], 'val' : self.loss, 'test' : self.loss}
        
        self.val_embed_tensor1 = tf.placeholder(tf.float32, shape=[self.args.nbatch, self.args.m])
        self.val_embed_tensor2 = tf.placeholder(tf.float32, shape=[self.nval, self.args.m])

        self.p_dist = math_ops.add(
                    math_ops.reduce_sum(math_ops.square(self.val_embed_tensor1), axis=[1], keep_dims=True),
                    math_ops.reduce_sum(math_ops.square(array_ops.transpose(self.val_embed_tensor2)), axis=[0], keep_dims=True))-\
                2.0 * math_ops.matmul(self.val_embed_tensor1, array_ops.transpose(self.val_embed_tensor2)) # [batch_size, 1], [1, ndata],  [batch_size, ndata]

        self.p_dist = math_ops.maximum(self.p_dist, 0.0) # [batch_size, ndata] 
        self.p_dist = math_ops.multiply(self.p_dist, math_ops.to_float(math_ops.logical_not(math_ops.less_equal(self.p_dist, 0.0))))
        self.p_max_idx = tf.nn.top_k(-self.p_dist, k=2)[1] # [batch_size, 2] # get smallest 2

        self.logger.info("Model setting up train ends") 
開發者ID:maestrojeong,項目名稱:Deep-Hash-Table-ICML18,代碼行數:31,代碼來源:deepmetric.py

示例14: _test_less_equal

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def _test_less_equal(data):
    """ One iteration of less_equal """
    return _test_elemwise(math_ops.less_equal, data)
#######################################################################
# Equal
# ----- 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:8,代碼來源:test_forward.py

示例15: test_forward_rel_ops

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less_equal [as 別名]
def test_forward_rel_ops():
    t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
    _test_forward_rel_op([t1, t2], math_ops.less)
    _test_forward_rel_op([t1, t2], math_ops.greater)
    _test_forward_rel_op([t1, t2], math_ops.less_equal)
    _test_forward_rel_op([t1, t2], math_ops.greater_equal)
    _test_forward_rel_op([t1, t2], math_ops.equal)
    _test_forward_rel_op([t1, t2], math_ops.not_equal)

#######################################################################
# ExpandDims
# ---------- 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:15,代碼來源:test_forward.py


注:本文中的tensorflow.python.ops.math_ops.less_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。