當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.less方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.less方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.less方法的具體用法?Python math_ops.less怎麽用?Python math_ops.less使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.less方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: random_flip_left_right

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def random_flip_left_right(image, bboxes, seed=None):
    """Random flip left-right of an image and its bounding boxes.
    """
    def flip_bboxes(bboxes):
        """Flip bounding boxes coordinates.
        """
        bboxes = tf.stack([bboxes[:, 0], 1 - bboxes[:, 3],
                           bboxes[:, 2], 1 - bboxes[:, 1]], axis=-1)
        return bboxes

    # Random flip. Tensorflow implementation.
    with tf.name_scope('random_flip_left_right'):
        image = ops.convert_to_tensor(image, name='image')
        _Check3DImage(image, require_static=False)
        uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
        mirror_cond = math_ops.less(uniform_random, .5)
        # Flip image.
        result = control_flow_ops.cond(mirror_cond,
                                       lambda: array_ops.reverse_v2(image, [1]),
                                       lambda: image)
        # Flip bboxes.
        bboxes = control_flow_ops.cond(mirror_cond,
                                       lambda: flip_bboxes(bboxes),
                                       lambda: bboxes)
        return fix_image_flip_shape(image, result), bboxes 
開發者ID:dengdan,項目名稱:seglink,代碼行數:27,代碼來源:tf_image.py

示例2: testDebugWhileLoopWatchingWholeGraphWorks

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def testDebugWhileLoopWatchingWholeGraphWorks(self):
    with session.Session() as sess:
      loop_body = lambda i: math_ops.add(i, 2)
      loop_cond = lambda i: math_ops.less(i, 16)

      i = constant_op.constant(10, name="i")
      loop = control_flow_ops.while_loop(loop_cond, loop_body, [i])

      run_options = config_pb2.RunOptions(output_partition_graphs=True)
      debug_utils.watch_graph(run_options,
                              sess.graph,
                              debug_urls=self._debug_urls())
      run_metadata = config_pb2.RunMetadata()
      self.assertEqual(
          16, sess.run(loop, options=run_options, run_metadata=run_metadata))

      dump = debug_data.DebugDumpDir(
          self._dump_root, partition_graphs=run_metadata.partition_graphs)

      self.assertEqual(
          [[10]], dump.get_tensors("while/Enter", 0, "DebugIdentity"))
      self.assertEqual(
          [[12], [14], [16]],
          dump.get_tensors("while/NextIteration", 0, "DebugIdentity")) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:session_debug_testlib.py

示例3: is_non_decreasing

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def is_non_decreasing(x, name=None):
  """Returns `True` if `x` is non-decreasing.

  Elements of `x` are compared in row-major order.  The tensor `[x[0],...]`
  is non-decreasing if for every adjacent pair we have `x[i] <= x[i+1]`.
  If `x` has less than two elements, it is trivially non-decreasing.

  See also:  `is_strictly_increasing`

  Args:
    x: Numeric `Tensor`.
    name: A name for this operation (optional).  Defaults to "is_non_decreasing"

  Returns:
    Boolean `Tensor`, equal to `True` iff `x` is non-decreasing.

  Raises:
    TypeError: if `x` is not a numeric tensor.
  """
  with ops.name_scope(name, 'is_non_decreasing', [x]):
    diff = _get_diff_for_monotonic_comparison(x)
    # When len(x) = 1, diff = [], less_equal = [], and reduce_all([]) = True.
    zero = ops.convert_to_tensor(0, dtype=diff.dtype)
    return math_ops.reduce_all(math_ops.less_equal(zero, diff)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:check_ops.py

示例4: is_strictly_increasing

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def is_strictly_increasing(x, name=None):
  """Returns `True` if `x` is strictly increasing.

  Elements of `x` are compared in row-major order.  The tensor `[x[0],...]`
  is strictly increasing if for every adjacent pair we have `x[i] < x[i+1]`.
  If `x` has less than two elements, it is trivially strictly increasing.

  See also:  `is_non_decreasing`

  Args:
    x: Numeric `Tensor`.
    name: A name for this operation (optional).
      Defaults to "is_strictly_increasing"

  Returns:
    Boolean `Tensor`, equal to `True` iff `x` is strictly increasing.

  Raises:
    TypeError: if `x` is not a numeric tensor.
  """
  with ops.name_scope(name, 'is_strictly_increasing', [x]):
    diff = _get_diff_for_monotonic_comparison(x)
    # When len(x) = 1, diff = [], less = [], and reduce_all([]) = True.
    zero = ops.convert_to_tensor(0, dtype=diff.dtype)
    return math_ops.reduce_all(math_ops.less(zero, diff)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:check_ops.py

示例5: random_flip_up_down

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def random_flip_up_down(image, seed=None):
  """Randomly flips an image vertically (upside down).

  With a 1 in 2 chance, outputs the contents of `image` flipped along the first
  dimension, which is `height`.  Otherwise output the image as-is.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`
    seed: A Python integer. Used to create a random seed. See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=False)
  uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
  mirror_cond = math_ops.less(uniform_random, .5)
  stride = array_ops.where(mirror_cond, -1, 1)
  result = image[::stride, :, :]
  return fix_image_flip_shape(image, result) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:27,代碼來源:image_ops_impl.py

示例6: random_flip_left_right

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def random_flip_left_right(image, seed=None):
  """Randomly flip an image horizontally (left to right).

  With a 1 in 2 chance, outputs the contents of `image` flipped along the
  second dimension, which is `width`.  Otherwise output the image as-is.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`
    seed: A Python integer. Used to create a random seed. See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=False)
  uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
  mirror_cond = math_ops.less(uniform_random, .5)
  stride = array_ops.where(mirror_cond, -1, 1)
  result = image[:, ::stride, :]
  return fix_image_flip_shape(image, result) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:27,代碼來源:image_ops_impl.py

示例7: _symmetric_matrix_square_root

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def _symmetric_matrix_square_root(mat, eps=1e-10):
  """Compute square root of a symmetric matrix.

  Note that this is different from an elementwise square root. We want to
  compute M' where M' = sqrt(mat) such that M' * M' = mat.

  Also note that this method **only** works for symmetric matrices.

  Args:
    mat: Matrix to take the square root of.
    eps: Small epsilon such that any element less than eps will not be square
      rooted to guard against numerical instability.

  Returns:
    Matrix square root of mat.
  """
  # Unlike numpy, tensorflow's return order is (s, u, v)
  s, u, v = linalg_ops.svd(mat)
  # sqrt is unstable around 0, just use 0 in such case
  si = array_ops.where(math_ops.less(s, eps), s, math_ops.sqrt(s))
  # Note that the v returned by Tensorflow is v = V
  # (when referencing the equation A = U S V^T)
  # This is unlike Numpy which returns v = V^T
  return math_ops.matmul(
      math_ops.matmul(u, array_ops.diag(si)), v, transpose_b=True) 
開發者ID:taki0112,項目名稱:GAN_Metrics-Tensorflow,代碼行數:27,代碼來源:frechet_kernel_Inception_distance.py

示例8: random_flip_up_down

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def random_flip_up_down(image, seed=None):
  """Randomly flips an image vertically (upside down).

  With a 1 in 2 chance, outputs the contents of `image` flipped along the first
  dimension, which is `height`.  Otherwise output the image as-is.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`
    seed: A Python integer. Used to create a random seed. See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=False)
  uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
  mirror = math_ops.less(array_ops.pack([uniform_random, 1.0, 1.0]), 0.5)
  return array_ops.reverse(image, mirror) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:image_ops.py

示例9: random_flip_left_right

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def random_flip_left_right(image, seed=None):
  """Randomly flip an image horizontally (left to right).

  With a 1 in 2 chance, outputs the contents of `image` flipped along the
  second dimension, which is `width`.  Otherwise output the image as-is.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`
    seed: A Python integer. Used to create a random seed. See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=False)
  uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
  mirror = math_ops.less(array_ops.pack([1.0, uniform_random, 1.0]), 0.5)
  return array_ops.reverse(image, mirror) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:image_ops.py

示例10: _padding_mask

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def _padding_mask(sequence_lengths, padded_length):
  """Creates a mask used for calculating losses with padded input.

  Args:
    sequence_lengths: a `Tensor` of shape `[batch_size]` containing the unpadded
      length of  each sequence.
    padded_length: a scalar `Tensor` indicating the length of the sequences
      after padding
  Returns:
    A boolean `Tensor` M of shape `[batch_size, padded_length]` where
    `M[i, j] == True` when `lengths[i] > j`.

  """
  range_tensor = math_ops.range(padded_length)
  return math_ops.less(array_ops.expand_dims(range_tensor, 0),
                       array_ops.expand_dims(sequence_lengths, 1)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:dynamic_rnn_estimator.py

示例11: sample

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def sample(self):
        u = tf.random_uniform(tf.shape(self.ps))
        return tf.to_float(math_ops.less(u, self.ps)) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:5,代碼來源:distributions.py

示例12: random_flip_up_down

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def random_flip_up_down(image, seed=None):
  """Randomly flips an image vertically (upside down).

  With a 1 in 2 chance, outputs the contents of `image` flipped along the first
  dimension, which is `height`.  Otherwise output the image as-is.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`
    seed: A Python integer. Used to create a random seed. See
      @{tf.set_random_seed}
      for behavior.

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  image = control_flow_ops.with_dependencies(
      _Check3DImage(image, require_static=False), image)
  uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
  mirror_cond = math_ops.less(uniform_random, .5)
  result = control_flow_ops.cond(mirror_cond,
                                 lambda: array_ops.reverse(image, [0]),
                                 lambda: image)
  return fix_image_flip_shape(image, result) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:29,代碼來源:image_ops_impl.py

示例13: random_flip_left_right

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def random_flip_left_right(image, seed=None):
  """Randomly flip an image horizontally (left to right).

  With a 1 in 2 chance, outputs the contents of `image` flipped along the
  second dimension, which is `width`.  Otherwise output the image as-is.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`
    seed: A Python integer. Used to create a random seed. See
      @{tf.set_random_seed}
      for behavior.

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  image = control_flow_ops.with_dependencies(
      _Check3DImage(image, require_static=False), image)
  uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
  mirror_cond = math_ops.less(uniform_random, .5)
  result = control_flow_ops.cond(mirror_cond,
                                 lambda: array_ops.reverse(image, [1]),
                                 lambda: image)
  return fix_image_flip_shape(image, result) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:29,代碼來源:image_ops_impl.py

示例14: assert_less

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def assert_less(x, y, data=None, summarize=None, message=None, name=None):
  """Assert the condition `x < y` holds element-wise.

  Example of adding a dependency to an operation:

  ```python
  with tf.control_dependencies([tf.assert_less(x, y)]):
    output = tf.reduce_sum(x)
  ```

  This condition holds if for every pair of (possibly broadcast) elements
  `x[i]`, `y[i]`, we have `x[i] < y[i]`.
  If both `x` and `y` are empty, this is trivially satisfied.

  Args:
    x:  Numeric `Tensor`.
    y:  Numeric `Tensor`, same dtype as and broadcastable to `x`.
    data:  The tensors to print out if the condition is False.  Defaults to
      error message and first few entries of `x`, `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).  Defaults to "assert_less".

  Returns:
    Op that raises `InvalidArgumentError` if `x < y` is False.
  """
  message = message or ''
  with ops.name_scope(name, 'assert_less', [x, y, data]):
    x = ops.convert_to_tensor(x, name='x')
    y = ops.convert_to_tensor(y, name='y')
    if data is None:
      data = [
          message,
          'Condition x < y did not hold element-wise:'
          'x (%s) = ' % x.name, x, 'y (%s) = ' % y.name, y
      ]
    condition = math_ops.reduce_all(math_ops.less(x, y))
    return control_flow_ops.Assert(condition, data, summarize=summarize) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:40,代碼來源:check_ops.py

示例15: _ndtr

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import less [as 別名]
def _ndtr(x):
  """Implements ndtr core logic."""
  half_sqrt_2 = constant_op.constant(
      0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2")
  w = x * half_sqrt_2
  z = math_ops.abs(w)
  y = array_ops.where(math_ops.less(z, half_sqrt_2),
                      1. + math_ops.erf(w),
                      array_ops.where(math_ops.greater(w, 0.),
                                      2. - math_ops.erfc(z),
                                      math_ops.erfc(z)))
  return 0.5 * y 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:14,代碼來源:special_math.py


注:本文中的tensorflow.python.ops.math_ops.less方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。