本文整理匯總了Python中tensorflow.python.ops.math_ops.greater_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.greater_equal方法的具體用法?Python math_ops.greater_equal怎麽用?Python math_ops.greater_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.greater_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _verify_compatible_image_shapes
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def _verify_compatible_image_shapes(img1, img2):
"""Checks if two image tensors are compatible for applying SSIM or PSNR.
This function checks if two sets of images have ranks at least 3, and if the
last three dimensions match.
Args:
img1: Tensor containing the first image batch.
img2: Tensor containing the second image batch.
Returns:
A tuple containing: the first tensor shape, the second tensor shape, and a
list of control_flow_ops.Assert() ops implementing the checks.
Raises:
ValueError: When static shape check fails.
"""
shape1 = img1.get_shape().with_rank_at_least(3)
shape2 = img2.get_shape().with_rank_at_least(3)
shape1[-3:].assert_is_compatible_with(shape2[-3:])
if shape1.ndims is not None and shape2.ndims is not None:
for dim1, dim2 in zip(reversed(shape1.dims[:-3]),
reversed(shape2.dims[:-3])):
if not (dim1 == 1 or dim2 == 1 or dim1.is_compatible_with(dim2)):
raise ValueError('Two images are not compatible: %s and %s' % (shape1, shape2))
shape1, shape2 = array_ops.shape_n([img1, img2])
checks = []
checks.append(control_flow_ops.Assert(
math_ops.greater_equal(array_ops.size(shape1), 3),
[shape1, shape2], summarize=10))
checks.append(control_flow_ops.Assert(
math_ops.reduce_all(math_ops.equal(shape1[-3:], shape2[-3:])),
[shape1, shape2], summarize=10))
return shape1, shape2, checks
示例2: assert_greater_equal
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def assert_greater_equal(x, y, data=None, summarize=None, message=None,
name=None):
"""Assert the condition `x >= y` holds element-wise.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_greater_equal(x, y)]):
output = tf.reduce_sum(x)
```
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] >= y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional). Defaults to
"assert_greater_equal"
Returns:
Op that raises `InvalidArgumentError` if `x >= y` is False.
"""
message = message or ''
with ops.name_scope(name, 'assert_greater_equal', [x, y, data]):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
message,
'Condition x >= y did not hold element-wise:'
'x (%s) = ' % x.name, x, 'y (%s) = ' % y.name, y
]
condition = math_ops.reduce_all(math_ops.greater_equal(x, y))
return control_flow_ops.Assert(condition, data, summarize=summarize)
示例3: _MaximumGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def _MaximumGrad(op, grad):
"""Returns grad*(x > y, x <= y) with type of grad."""
return _MaximumMinimumGrad(op, grad, math_ops.greater_equal)
示例4: _prune_invalid_ids
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def _prune_invalid_ids(sparse_ids, sparse_weights):
"""Prune invalid IDs (< 0) from the input ids and weights."""
is_id_valid = math_ops.greater_equal(sparse_ids.values, 0)
if sparse_weights is not None:
is_id_valid = math_ops.logical_and(
is_id_valid, math_ops.greater(sparse_weights.values, 0))
sparse_ids = sparse_ops.sparse_retain(sparse_ids, is_id_valid)
if sparse_weights is not None:
sparse_weights = sparse_ops.sparse_retain(sparse_weights, is_id_valid)
return sparse_ids, sparse_weights
示例5: _streaming_accuracy_at_threshold
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def _streaming_accuracy_at_threshold(predictions, labels, weights, threshold):
threshold_predictions = math_ops.to_float(
math_ops.greater_equal(predictions, threshold))
return metrics_lib.streaming_accuracy(
predictions=threshold_predictions, labels=labels, weights=weights)
示例6: _accuracy_at_threshold
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def _accuracy_at_threshold(threshold):
def _accuracy_metric(predictions, labels, weights=None):
threshold_predictions = math_ops.to_float(
math_ops.greater_equal(predictions, threshold))
return metric_ops.streaming_accuracy(
predictions=threshold_predictions, labels=labels, weights=weights)
return _accuracy_metric
示例7: __ge__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def __ge__(self, other):
return greater_equal(self, other)
示例8: assert_greater_equal
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def assert_greater_equal(x, y, data=None, summarize=None, message=None,
name=None):
"""Assert the condition `x >= y` holds element-wise.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_greater_equal(x, y)]):
output = tf.reduce_sum(x)
```
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] >= y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional). Defaults to
"assert_greater_equal"
Returns:
Op that raises `InvalidArgumentError` if `x >= y` is False.
"""
message = message or ''
with ops.name_scope(name, 'assert_greater_equal', [x, y, data]):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
message,
'Condition x >= y did not hold element-wise: x = ', x.name, x, 'y = ',
y.name, y
]
condition = math_ops.reduce_all(math_ops.greater_equal(x, y))
return control_flow_ops.Assert(condition, data, summarize=summarize)
示例9: _accuracy_at_threshold
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def _accuracy_at_threshold(threshold):
def _accuracy_metric(predictions, labels, weights=None):
threshold_predictions = math_ops.to_float(
math_ops.greater_equal(predictions, threshold))
return metrics_lib.streaming_accuracy(
predictions=threshold_predictions, labels=labels, weights=weights)
return _accuracy_metric
示例10: setUp
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def setUp(self):
super(CoreBinaryOpsTest, self).setUp()
self.x_probs_broadcast_tensor = array_ops.reshape(
self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])
self.channel_probs_broadcast_tensor = array_ops.reshape(
self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])
# == and != are not element-wise for tf.Tensor, so they shouldn't be
# elementwise for LabeledTensor, either.
self.ops = [
('add', operator.add, math_ops.add, core.add),
('sub', operator.sub, math_ops.subtract, core.sub),
('mul', operator.mul, math_ops.multiply, core.mul),
('div', operator.truediv, math_ops.div, core.div),
('mod', operator.mod, math_ops.mod, core.mod),
('pow', operator.pow, math_ops.pow, core.pow_function),
('equal', None, math_ops.equal, core.equal),
('less', operator.lt, math_ops.less, core.less),
('less_equal', operator.le, math_ops.less_equal, core.less_equal),
('not_equal', None, math_ops.not_equal, core.not_equal),
('greater', operator.gt, math_ops.greater, core.greater),
('greater_equal', operator.ge, math_ops.greater_equal,
core.greater_equal),
]
self.test_lt_1 = self.x_probs_lt
self.test_lt_2 = self.channel_probs_lt
self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
self.broadcast_axes = [self.a0, self.a1, self.a3]
示例11: test_forward_rel_ops
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def test_forward_rel_ops():
t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
_test_forward_rel_op([t1, t2], math_ops.less)
_test_forward_rel_op([t1, t2], math_ops.greater)
_test_forward_rel_op([t1, t2], math_ops.less_equal)
_test_forward_rel_op([t1, t2], math_ops.greater_equal)
_test_forward_rel_op([t1, t2], math_ops.equal)
_test_forward_rel_op([t1, t2], math_ops.not_equal)
#######################################################################
# Main
# ----
示例12: _ssim_per_channel
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def _ssim_per_channel(img1, img2, max_val=1.0):
filter_size = constant_op.constant(11, dtype=dtypes.int32)
filter_sigma = constant_op.constant(1.5, dtype=img1.dtype)
shape1, shape2 = array_ops.shape_n([img1, img2])
checks = [
control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal(
shape1[-3:-1], filter_size)), [shape1, filter_size], summarize=8),
control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal(
shape2[-3:-1], filter_size)), [shape2, filter_size], summarize=8)]
# Enforce the check to run before computation.
with ops.control_dependencies(checks):
img1 = array_ops.identity(img1)
kernel = _fspecial_gauss(filter_size, filter_sigma)
kernel = array_ops.tile(kernel, multiples=[1, 1, shape1[-1], 1])
compensation = 1.0
def reducer(x):
shape = array_ops.shape(x)
x = array_ops.reshape(x, shape=array_ops.concat([[-1], shape[-3:]], 0))
y = nn.depthwise_conv2d(x, kernel, strides=[1, 1, 1, 1], padding='VALID')
return array_ops.reshape(y, array_ops.concat([shape[:-3],
array_ops.shape(y)[1:]], 0))
luminance, cs = _ssim_helper(img1, img2, reducer, max_val, compensation)
# Average over the second and the third from the last: height, width.
axes = constant_op.constant([-3, -2], dtype=dtypes.int32)
ssim_val = math_ops.reduce_mean(luminance * cs, axes)
cs = math_ops.reduce_mean(cs, axes)
luminance = math_ops.reduce_mean(luminance, axes)
return ssim_val, cs, luminance
示例13: _accuracy_at_threshold
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def _accuracy_at_threshold(threshold):
def _accuracy_metric(predictions, labels, weights=None):
threshold_predictions = math_ops.to_float(
math_ops.greater_equal(predictions, threshold))
return metrics_lib.streaming_accuracy(predictions=threshold_predictions,
labels=labels,
weights=weights)
return _accuracy_metric
示例14: mean_reciprocal_rank
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def mean_reciprocal_rank(labels, predictions, weights=None, name=None):
"""Computes mean reciprocal rank (MRR).
Args:
labels: A `Tensor` of the same shape as `predictions`. A value >= 1 means a
relevant example.
predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
the ranking score of the corresponding example.
weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
former case is per-example and the latter case is per-list.
name: A string used as the name for this metric.
Returns:
A metric for the weighted mean reciprocal rank of the batch.
"""
with ops.name_scope(name, 'mean_reciprocal_rank',
(labels, predictions, weights)):
_, list_size = array_ops.unstack(array_ops.shape(predictions))
labels, predictions, weights, topn = _prepare_and_validate_params(
labels, predictions, weights, list_size)
sorted_labels, = utils.sort_by_scores(predictions, [labels], topn=topn)
# Relevance = 1.0 when labels >= 1.0 to accommodate graded relevance.
relevance = math_ops.to_float(
math_ops.greater_equal(
sorted_labels, 1.0))
reciprocal_rank = 1.0 / math_ops.to_float(math_ops.range(1, topn + 1))
# MRR has a shape of [batch_size, 1]
mrr = math_ops.reduce_max(
relevance * reciprocal_rank, axis=1, keepdims=True)
return math_ops.reduce_mean(
mrr * array_ops.ones_like(weights) * weights)
示例15: expected_reciprocal_rank
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 別名]
def expected_reciprocal_rank(
labels, predictions, weights=None, topn=None, name=None):
"""Computes expected reciprocal rank (ERR).
Args:
labels: A `Tensor` of the same shape as `predictions`. A value >= 1 means a
relevant example.
predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
the ranking score of the corresponding example.
weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
former case is per-example and the latter case is per-list.
topn: A cutoff for how many examples to consider for this metric.
name: A string used as the name for this metric.
Returns:
A metric for the weighted expected reciprocal rank of the batch.
"""
with ops.name_scope(name, 'expected_reciprocal_rank',
(labels, predictions, weights)):
labels, predictions, weights, topn = _prepare_and_validate_params(
labels, predictions, weights, topn)
sorted_labels, sorted_weights = utils.sort_by_scores(
predictions, [labels, weights], topn=topn)
_, list_size = array_ops.unstack(array_ops.shape(sorted_labels))
relevance = (math_ops.pow(2.0, sorted_labels) - 1) / \
math_ops.pow(2.0, RankingMetricKey.MAX_LABEL)
non_rel = tf.math.cumprod(1.0 - relevance, axis=1) / (1.0 - relevance)
reciprocal_rank = 1.0 / \
math_ops.to_float(math_ops.range(1, list_size + 1))
mask = math_ops.to_float(math_ops.greater_equal(
reciprocal_rank, 1.0 / (topn + 1)))
reciprocal_rank = reciprocal_rank * mask
# ERR has a shape of [batch_size, 1]
err = math_ops.reduce_sum(
relevance * non_rel * reciprocal_rank * sorted_weights, axis=1, keepdims=True)
return math_ops.reduce_mean(err)