本文整理匯總了Python中tensorflow.python.ops.math_ops.floor方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.floor方法的具體用法?Python math_ops.floor怎麽用?Python math_ops.floor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.floor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def __init__(self,
df,
loc,
scale,
validate_args=False,
allow_nan_stats=True,
name="StudentTWithAbsDfSoftplusScale"):
parameters = locals()
with ops.name_scope(name, values=[df, scale]):
super(StudentTWithAbsDfSoftplusScale, self).__init__(
df=math_ops.floor(math_ops.abs(df)),
loc=loc,
scale=nn.softplus(scale, name="softplus_scale"),
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
name=name)
self._parameters = parameters
示例2: _sample_n
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _sample_n(self, n, seed=None):
# Uniform variates must be sampled from the open-interval `(0, 1)` rather
# than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
# because it is the smallest, positive, "normal" number. A "normal" number
# is such that the mantissa has an implicit leading 1. Normal, positive
# numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
# this case, a subnormal number (i.e., np.nextafter) can cause us to sample
# 0.
sampled = random_ops.random_uniform(
array_ops.concat([[n], array_ops.shape(self._probs)], 0),
minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
maxval=1.,
seed=seed,
dtype=self.dtype)
return math_ops.floor(
math_ops.log(sampled) / math_ops.log1p(-self.probs))
示例3: forward
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def forward(self, inputs):
prods = tf.concat(inputs, 1)
weights = self.weights
if self.args.linear_sum_weights:
sums = tf.log(tf.matmul(tf.exp(prods), tf.squeeze(self.weights)))
else:
prods = tf.expand_dims(prods, axis=-1)
if self.dropout_op is not None:
if self.args.drop_connect:
batch_size = prods.shape[0]
prod_num = prods.shape[1]
dropout_shape = [batch_size, prod_num, self.size]
random_tensor = random_ops.random_uniform(dropout_shape,
dtype=self.weights.dtype)
dropout_mask = tf.log(math_ops.floor(self.dropout_op + random_tensor))
weights = weights + dropout_mask
else:
random_tensor = random_ops.random_uniform(prods.shape, dtype=prods.dtype)
dropout_mask = tf.log(math_ops.floor(self.dropout_op + random_tensor))
prods = prods + dropout_mask
child_values = prods + weights
self.max_child_idx = tf.argmax(child_values, axis=1)
sums = tf.reduce_logsumexp(child_values, axis=1)
return sums
示例4: _variational_recurrent_dropout_value
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _variational_recurrent_dropout_value(
self, index, value, noise, keep_prob):
"""Performs dropout given the pre-calculated noise tensor."""
# uniform [keep_prob, 1.0 + keep_prob)
random_tensor = keep_prob + noise
# 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
binary_tensor = math_ops.floor(random_tensor)
ret = math_ops.div(value, keep_prob) * binary_tensor
ret.set_shape(value.get_shape())
return ret
示例5: _cdf
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _cdf(self, counts):
if self.validate_args:
# We set `check_integer=False` since the CDF is defined on whole real
# line.
counts = math_ops.floor(
distribution_util.embed_check_nonnegative_discrete(
counts, check_integer=False))
counts *= array_ops.ones_like(self.probs)
return array_ops.where(
counts < 0.,
array_ops.zeros_like(counts),
-math_ops.expm1(
(counts + 1) * math_ops.log1p(-self.probs)))
示例6: _mode
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _mode(self):
return math_ops.floor(self.rate)
示例7: _log_cdf
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _log_cdf(self, y):
low = self._low
high = self._high
# Recall the promise:
# cdf(y) := P[Y <= y]
# = 1, if y >= high,
# = 0, if y < low,
# = P[X <= y], otherwise.
# P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
# between.
j = math_ops.floor(y)
result_so_far = self.distribution.log_cdf(j)
# Broadcast, because it's possible that this is a single distribution being
# evaluated on a number of samples, or something like that.
j += array_ops.zeros_like(result_so_far)
# Re-define values at the cutoffs.
if low is not None:
neg_inf = -np.inf * array_ops.ones_like(result_so_far)
result_so_far = array_ops.where(j < low, neg_inf, result_so_far)
if high is not None:
result_so_far = array_ops.where(j >= high,
array_ops.zeros_like(result_so_far),
result_so_far)
return result_so_far
示例8: _cdf
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _cdf(self, y):
low = self._low
high = self._high
# Recall the promise:
# cdf(y) := P[Y <= y]
# = 1, if y >= high,
# = 0, if y < low,
# = P[X <= y], otherwise.
# P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
# between.
j = math_ops.floor(y)
# P[X <= j], used when low < X < high.
result_so_far = self.distribution.cdf(j)
# Broadcast, because it's possible that this is a single distribution being
# evaluated on a number of samples, or something like that.
j += array_ops.zeros_like(result_so_far)
# Re-define values at the cutoffs.
if low is not None:
result_so_far = array_ops.where(j < low,
array_ops.zeros_like(result_so_far),
result_so_far)
if high is not None:
result_so_far = array_ops.where(j >= high,
array_ops.ones_like(result_so_far),
result_so_far)
return result_so_far
示例9: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def __init__(self,
df,
validate_args=False,
allow_nan_stats=True,
name="Chi2WithAbsDf"):
parameters = locals()
with ops.name_scope(name, values=[df]):
super(Chi2WithAbsDf, self).__init__(
df=math_ops.floor(
math_ops.abs(df, name="abs_df"),
name="floor_abs_df"),
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
name=name)
self._parameters = parameters
示例10: _mode
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _mode(self):
return math_ops.floor((1. + self.total_count) * self.probs)
示例11: _mode
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _mode(self):
adjusted_count = array_ops.where(
1. < self.total_count,
self.total_count - 1.,
array_ops.zeros_like(self.total_count))
return math_ops.floor(adjusted_count * math_ops.exp(self.logits))
示例12: _cdf
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _cdf(self, x):
x = self._assert_valid_sample(x, check_integer=False)
return math_ops.igammac(math_ops.floor(x + 1), self.lam)
示例13: _mode
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _mode(self):
return math_ops.floor(self.lam)
示例14: _log_cdf
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _log_cdf(self, y):
lower_cutoff = self._lower_cutoff
upper_cutoff = self._upper_cutoff
# Recall the promise:
# cdf(y) := P[Y <= y]
# = 1, if y >= upper_cutoff,
# = 0, if y < lower_cutoff,
# = P[X <= y], otherwise.
# P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
# between.
j = math_ops.floor(y)
result_so_far = self.distribution.log_cdf(j)
# Broadcast, because it's possible that this is a single distribution being
# evaluated on a number of samples, or something like that.
j += array_ops.zeros_like(result_so_far)
# Re-define values at the cutoffs.
if lower_cutoff is not None:
neg_inf = -np.inf * array_ops.ones_like(result_so_far)
result_so_far = array_ops.where(j < lower_cutoff, neg_inf, result_so_far)
if upper_cutoff is not None:
result_so_far = array_ops.where(j >= upper_cutoff,
array_ops.zeros_like(result_so_far),
result_so_far)
return result_so_far
示例15: _cdf
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _cdf(self, y):
lower_cutoff = self._lower_cutoff
upper_cutoff = self._upper_cutoff
# Recall the promise:
# cdf(y) := P[Y <= y]
# = 1, if y >= upper_cutoff,
# = 0, if y < lower_cutoff,
# = P[X <= y], otherwise.
# P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
# between.
j = math_ops.floor(y)
# P[X <= j], used when lower_cutoff < X < upper_cutoff.
result_so_far = self.distribution.cdf(j)
# Broadcast, because it's possible that this is a single distribution being
# evaluated on a number of samples, or something like that.
j += array_ops.zeros_like(result_so_far)
# Re-define values at the cutoffs.
if lower_cutoff is not None:
result_so_far = array_ops.where(j < lower_cutoff,
array_ops.zeros_like(result_so_far),
result_so_far)
if upper_cutoff is not None:
result_so_far = array_ops.where(j >= upper_cutoff,
array_ops.ones_like(result_so_far),
result_so_far)
return result_so_far