當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.floor方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.floor方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.floor方法的具體用法?Python math_ops.floor怎麽用?Python math_ops.floor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.floor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def __init__(self,
               df,
               loc,
               scale,
               validate_args=False,
               allow_nan_stats=True,
               name="StudentTWithAbsDfSoftplusScale"):
    parameters = locals()
    with ops.name_scope(name, values=[df, scale]):
      super(StudentTWithAbsDfSoftplusScale, self).__init__(
          df=math_ops.floor(math_ops.abs(df)),
          loc=loc,
          scale=nn.softplus(scale, name="softplus_scale"),
          validate_args=validate_args,
          allow_nan_stats=allow_nan_stats,
          name=name)
    self._parameters = parameters 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:student_t.py

示例2: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _sample_n(self, n, seed=None):
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    sampled = random_ops.random_uniform(
        array_ops.concat([[n], array_ops.shape(self._probs)], 0),
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        seed=seed,
        dtype=self.dtype)

    return math_ops.floor(
        math_ops.log(sampled) / math_ops.log1p(-self.probs)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:geometric.py

示例3: forward

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def forward(self, inputs):
        prods = tf.concat(inputs, 1)
        weights = self.weights

        if self.args.linear_sum_weights:
            sums = tf.log(tf.matmul(tf.exp(prods), tf.squeeze(self.weights)))
        else:
            prods = tf.expand_dims(prods, axis=-1)
            if self.dropout_op is not None:
                if self.args.drop_connect:
                    batch_size = prods.shape[0]
                    prod_num = prods.shape[1]
                    dropout_shape = [batch_size, prod_num, self.size]

                    random_tensor = random_ops.random_uniform(dropout_shape,
                                                              dtype=self.weights.dtype)
                    dropout_mask = tf.log(math_ops.floor(self.dropout_op + random_tensor))
                    weights = weights + dropout_mask

                else:
                    random_tensor = random_ops.random_uniform(prods.shape, dtype=prods.dtype)
                    dropout_mask = tf.log(math_ops.floor(self.dropout_op + random_tensor))
                    prods = prods + dropout_mask

            child_values = prods + weights
            self.max_child_idx = tf.argmax(child_values, axis=1)
            sums = tf.reduce_logsumexp(child_values, axis=1)

        return sums 
開發者ID:stelzner,項目名稱:supair,代碼行數:31,代碼來源:rat_spn.py

示例4: _variational_recurrent_dropout_value

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _variational_recurrent_dropout_value(
      self, index, value, noise, keep_prob):
    """Performs dropout given the pre-calculated noise tensor."""
    # uniform [keep_prob, 1.0 + keep_prob)
    random_tensor = keep_prob + noise

    # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
    binary_tensor = math_ops.floor(random_tensor)
    ret = math_ops.div(value, keep_prob) * binary_tensor
    ret.set_shape(value.get_shape())
    return ret 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:13,代碼來源:rnn_cell_impl.py

示例5: _cdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _cdf(self, counts):
    if self.validate_args:
      # We set `check_integer=False` since the CDF is defined on whole real
      # line.
      counts = math_ops.floor(
          distribution_util.embed_check_nonnegative_discrete(
              counts, check_integer=False))
    counts *= array_ops.ones_like(self.probs)
    return array_ops.where(
        counts < 0.,
        array_ops.zeros_like(counts),
        -math_ops.expm1(
            (counts + 1) * math_ops.log1p(-self.probs))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:15,代碼來源:geometric.py

示例6: _mode

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _mode(self):
    return math_ops.floor(self.rate) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:poisson.py

示例7: _log_cdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _log_cdf(self, y):
    low = self._low
    high = self._high

    # Recall the promise:
    # cdf(y) := P[Y <= y]
    #         = 1, if y >= high,
    #         = 0, if y < low,
    #         = P[X <= y], otherwise.

    # P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
    # between.
    j = math_ops.floor(y)

    result_so_far = self.distribution.log_cdf(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if low is not None:
      neg_inf = -np.inf * array_ops.ones_like(result_so_far)
      result_so_far = array_ops.where(j < low, neg_inf, result_so_far)
    if high is not None:
      result_so_far = array_ops.where(j >= high,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)

    return result_so_far 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:32,代碼來源:quantized_distribution.py

示例8: _cdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _cdf(self, y):
    low = self._low
    high = self._high

    # Recall the promise:
    # cdf(y) := P[Y <= y]
    #         = 1, if y >= high,
    #         = 0, if y < low,
    #         = P[X <= y], otherwise.

    # P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
    # between.
    j = math_ops.floor(y)

    # P[X <= j], used when low < X < high.
    result_so_far = self.distribution.cdf(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if low is not None:
      result_so_far = array_ops.where(j < low,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)
    if high is not None:
      result_so_far = array_ops.where(j >= high,
                                      array_ops.ones_like(result_so_far),
                                      result_so_far)

    return result_so_far 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:quantized_distribution.py

示例9: __init__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def __init__(self,
               df,
               validate_args=False,
               allow_nan_stats=True,
               name="Chi2WithAbsDf"):
    parameters = locals()
    with ops.name_scope(name, values=[df]):
      super(Chi2WithAbsDf, self).__init__(
          df=math_ops.floor(
              math_ops.abs(df, name="abs_df"),
              name="floor_abs_df"),
          validate_args=validate_args,
          allow_nan_stats=allow_nan_stats,
          name=name)
    self._parameters = parameters 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:17,代碼來源:chi2.py

示例10: _mode

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _mode(self):
    return math_ops.floor((1. + self.total_count) * self.probs) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:binomial.py

示例11: _mode

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _mode(self):
    adjusted_count = array_ops.where(
        1. < self.total_count,
        self.total_count - 1.,
        array_ops.zeros_like(self.total_count))
    return math_ops.floor(adjusted_count * math_ops.exp(self.logits)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:negative_binomial.py

示例12: _cdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _cdf(self, x):
    x = self._assert_valid_sample(x, check_integer=False)
    return math_ops.igammac(math_ops.floor(x + 1), self.lam) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:5,代碼來源:poisson.py

示例13: _mode

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _mode(self):
    return math_ops.floor(self.lam) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:4,代碼來源:poisson.py

示例14: _log_cdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _log_cdf(self, y):
    lower_cutoff = self._lower_cutoff
    upper_cutoff = self._upper_cutoff

    # Recall the promise:
    # cdf(y) := P[Y <= y]
    #         = 1, if y >= upper_cutoff,
    #         = 0, if y < lower_cutoff,
    #         = P[X <= y], otherwise.

    # P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
    # between.
    j = math_ops.floor(y)

    result_so_far = self.distribution.log_cdf(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if lower_cutoff is not None:
      neg_inf = -np.inf * array_ops.ones_like(result_so_far)
      result_so_far = array_ops.where(j < lower_cutoff, neg_inf, result_so_far)
    if upper_cutoff is not None:
      result_so_far = array_ops.where(j >= upper_cutoff,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)

    return result_so_far 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:32,代碼來源:quantized_distribution.py

示例15: _cdf

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import floor [as 別名]
def _cdf(self, y):
    lower_cutoff = self._lower_cutoff
    upper_cutoff = self._upper_cutoff

    # Recall the promise:
    # cdf(y) := P[Y <= y]
    #         = 1, if y >= upper_cutoff,
    #         = 0, if y < lower_cutoff,
    #         = P[X <= y], otherwise.

    # P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in
    # between.
    j = math_ops.floor(y)

    # P[X <= j], used when lower_cutoff < X < upper_cutoff.
    result_so_far = self.distribution.cdf(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if lower_cutoff is not None:
      result_so_far = array_ops.where(j < lower_cutoff,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)
    if upper_cutoff is not None:
      result_so_far = array_ops.where(j >= upper_cutoff,
                                      array_ops.ones_like(result_so_far),
                                      result_so_far)

    return result_so_far 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:34,代碼來源:quantized_distribution.py


注:本文中的tensorflow.python.ops.math_ops.floor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。