本文整理匯總了Python中tensorflow.python.ops.math_ops.divide方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.divide方法的具體用法?Python math_ops.divide怎麽用?Python math_ops.divide使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.divide方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_drop_fraction
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def get_drop_fraction(self, global_step, is_mask_update_iter_op):
"""Returns a constant or annealing drop_fraction op."""
if self._drop_fraction_anneal == 'constant':
drop_frac = self._drop_fraction_initial_value
elif self._drop_fraction_anneal == 'cosine':
decay_steps = self._end_step - self._begin_step
drop_frac = learning_rate_decay.cosine_decay(
self._drop_fraction_initial_value, global_step, decay_steps,
name='cosine_drop_fraction')
elif self._drop_fraction_anneal.startswith('exponential'):
exponent = extract_number(self._drop_fraction_anneal)
div_dtype = self._drop_fraction_initial_value.dtype
power = math_ops.divide(
math_ops.cast(global_step - self._begin_step, div_dtype),
math_ops.cast(self._end_step - self._begin_step, div_dtype),
)
drop_frac = math_ops.multiply(
self._drop_fraction_initial_value,
math_ops.pow(1 - power, exponent),
name='%s_drop_fraction' % self._drop_fraction_anneal)
else:
raise ValueError('drop_fraction_anneal: %s is not valid' %
self._drop_fraction_anneal)
return array_ops.where(is_mask_update_iter_op, drop_frac,
array_ops.zeros_like(drop_frac))
示例2: __init__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def __init__(self, embedding, start_tokens, end_token,
softmax_temperature=None, seed=None):
"""Initializer.
Args:
embedding: A callable that takes a vector tensor of `ids` (argmax ids),
or the `params` argument for `embedding_lookup`. The returned tensor
will be passed to the decoder input.
start_tokens: `int32` vector shaped `[batch_size]`, the start tokens.
end_token: `int32` scalar, the token that marks end of decoding.
softmax_temperature: (Optional) `float32` scalar, value to divide the
logits by before computing the softmax. Larger values (above 1.0) result
in more random samples, while smaller values push the sampling
distribution towards the argmax. Must be strictly greater than 0.
Defaults to 1.0.
seed: (Optional) The sampling seed.
Raises:
ValueError: if `start_tokens` is not a 1D tensor or `end_token` is not a
scalar.
"""
super(MySampleEmbeddingHelper, self).__init__(
embedding, start_tokens, end_token)
self._softmax_temperature = softmax_temperature
self._seed = seed
示例3: sample
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def sample(self, time, outputs, state, name=None):
"""sample for SampleEmbeddingHelper."""
del time, state # unused by sample_fn
# Outputs are logits, we sample instead of argmax (greedy).
if not isinstance(outputs, ops.Tensor):
raise TypeError("Expected outputs to be a single Tensor, got: %s" %
type(outputs))
if self._softmax_temperature is None:
logits = outputs
else:
#logits = outputs / self._softmax_temperature
logits = math_ops.divide(outputs, self._softmax_temperature)
sample_id_sampler = categorical.Categorical(logits=logits)
sample_ids = sample_id_sampler.sample(seed=self._seed)
return sample_ids
示例4: testDebugNumericSummaryMuteOnHealthyAndCustomBoundsWork
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def testDebugNumericSummaryMuteOnHealthyAndCustomBoundsWork(self):
with session.Session() as sess:
a = variables.Variable([10.0, 10.0], name="a")
b = variables.Variable([10.0, 2.0], name="b")
x = math_ops.add(a, b, name="x") # [20.0, 12.0]
y = math_ops.divide(x, b, name="y") # [2.0, 6.0]
sess.run(variables.global_variables_initializer())
# Here, validate=False is necessary to avoid causality check error.
# TODO(cais): Maybe let DebugDumpDir constructor automatically ignore
# debug ops with mute_if_healthy=false attribute during validation.
_, dump = self._debug_run_and_get_dump(
sess, y, debug_ops=[
"DebugNumericSummary(mute_if_healthy=true; upper_bound=11.0)"],
validate=False)
self.assertEqual(1, dump.size)
self.assertAllClose([[
1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 12.0, 20.0, 16.0, 16.0, 1.0,
1.0, 2.0]], dump.get_tensors("x", 0, "DebugNumericSummary"))
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:24,代碼來源:session_debug_testlib.py
示例5: _safe_div
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def _safe_div(numerator, denominator, name):
"""Divides two values, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
name: Name for the returned op.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
return tf.where(
math_ops.greater(denominator, 0),
math_ops.divide(numerator, denominator),
tf.zeros_like(numerator),
name=name)
# =========================================================================== #
# TF Extended metrics: TP and FP arrays.
# =========================================================================== #
示例6: safe_divide
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def safe_divide(numerator, denominator, name):
"""Divides two values, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
name: Name for the returned op.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
return tf.where(
math_ops.greater(denominator, 0),
math_ops.divide(numerator, denominator),
tf.zeros_like(numerator),
name=name)
示例7: testDebugNumericSummaryMuteOnHealthyAndCustomBoundsWork
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def testDebugNumericSummaryMuteOnHealthyAndCustomBoundsWork(self):
with session.Session() as sess:
a = variables.Variable([10.0, 10.0], name="a")
b = variables.Variable([10.0, 2.0], name="b")
x = math_ops.add(a, b, name="x") # [20.0, 12.0]
y = math_ops.divide(x, b, name="y") # [2.0, 6.0]
sess.run(variables.global_variables_initializer())
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=[
"DebugNumericSummary(mute_if_healthy=true; upper_bound=11.0)"],
debug_urls=self._debug_urls())
sess.run(y, options=run_options, run_metadata=run_metadata)
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs,
validate=False)
# Here, validate=False is necessary to avoid causality check error.
# TODO(cais): Maybe let DebugDumpDir constructor automatically ignore
# debug ops with mute_if_healthy=false attribute during validation.
self.assertEqual(1, dump.size)
self.assertAllClose(
[[1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 12.0, 20.0, 16.0, 16.0]],
dump.get_tensors("x", 0, "DebugNumericSummary"))
示例8: _safe_div
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def _safe_div(numerator, denominator, name):
"""Divides two values, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
name: Name for the returned op.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
return tf.where(
math_ops.greater(denominator, 0),
math_ops.divide(numerator, denominator),
tf.zeros_like(numerator),
name=name)
示例9: _test_div
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def _test_div(data, fused_activation_function=None):
""" One iteration of divide """
return _test_elemwise(math_ops.divide, data, fused_activation_function)
#######################################################################
# Power
# -----
示例10: testDebugNumericSummaryMuteOnHealthyMutesOnlyHealthyTensorDumps
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def testDebugNumericSummaryMuteOnHealthyMutesOnlyHealthyTensorDumps(self):
with session.Session(config=no_rewrite_session_config()) as sess:
a = variables.Variable(10.0, name="a")
b = variables.Variable(0.0, name="b")
c = variables.Variable(0.0, name="c")
x = math_ops.divide(a, b, name="x")
y = math_ops.multiply(x, c, name="y")
sess.run(variables.global_variables_initializer())
# Here, validate=False is necessary to avoid causality check error.
# TODO(cais): Maybe let DebugDumpDir constructor automatically ignore
# debug ops with mute_if_healthy=false attribute during validation.
_, dump = self._debug_run_and_get_dump(
sess, y, debug_ops=["DebugNumericSummary(mute_if_healthy=true)"],
validate=False)
self.assertEqual(2, dump.size)
self.assertAllClose([[
1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, np.inf, -np.inf, np.nan,
np.nan, 1.0, 0.0
]], dump.get_tensors("x", 0, "DebugNumericSummary"))
self.assertAllClose([[
1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, np.inf, -np.inf, np.nan,
np.nan, 1.0, 0.0
]], dump.get_tensors("y", 0, "DebugNumericSummary"))
# Another run with the default mute_if_healthy (false) value should
# dump all the tensors.
shutil.rmtree(self._dump_root)
_, dump = self._debug_run_and_get_dump(
sess, y, debug_ops=["DebugNumericSummary()"])
self.assertEqual(8, dump.size)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:36,代碼來源:session_debug_testlib.py
示例11: testDebugNumericSummaryInvalidAttributesStringAreCaught
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def testDebugNumericSummaryInvalidAttributesStringAreCaught(self):
with session.Session() as sess:
a = variables.Variable(10.0, name="a")
b = variables.Variable(0.0, name="b")
c = variables.Variable(0.0, name="c")
x = math_ops.divide(a, b, name="x")
y = math_ops.multiply(x, c, name="y")
sess.run(variables.global_variables_initializer())
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"1 attribute key\(s\) were not valid for debug node "
r"__dbg_a:0_0_DebugNumericSummary: foo"):
sess.run(y, options=run_options, run_metadata=run_metadata)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0; bar=false)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"2 attribute key\(s\) were not valid for debug node "
r"__dbg_a:0_0_DebugNumericSummary:"):
sess.run(y, options=run_options, run_metadata=run_metadata)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0; mute_if_healthy=true)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"1 attribute key\(s\) were not valid for debug node "
r"__dbg_a:0_0_DebugNumericSummary: foo"):
sess.run(y, options=run_options, run_metadata=run_metadata)
示例12: testDebugNumericSummaryMuteOnHealthyMutesOnlyHealthyTensorDumps
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def testDebugNumericSummaryMuteOnHealthyMutesOnlyHealthyTensorDumps(self):
with session.Session() as sess:
a = variables.Variable(10.0, name="a")
b = variables.Variable(0.0, name="b")
c = variables.Variable(0.0, name="c")
x = math_ops.divide(a, b, name="x")
y = math_ops.multiply(x, c, name="y")
sess.run(variables.global_variables_initializer())
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(mute_if_healthy=true)"],
debug_urls=self._debug_urls())
sess.run(y, options=run_options, run_metadata=run_metadata)
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs,
validate=False)
# Here, validate=False is necessary to avoid causality check error.
# TODO(cais): Maybe let DebugDumpDir constructor automatically ignore
# debug ops with mute_if_healthy=false attribute during validation.
self.assertEqual(2, dump.size)
self.assertAllClose(
[[1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, np.inf, -np.inf, np.nan,
np.nan]],
dump.get_tensors("x", 0, "DebugNumericSummary"))
self.assertAllClose(
[[1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, np.inf, -np.inf, np.nan,
np.nan]],
dump.get_tensors("y", 0, "DebugNumericSummary"))
# Another run with the default mute_if_healthy (false) value should
# dump all the tensors.
shutil.rmtree(self._dump_root)
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary()"],
debug_urls=self._debug_urls())
sess.run(y, options=run_options, run_metadata=run_metadata)
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
self.assertEqual(8, dump.size)
示例13: testDebugNumericSummaryInvalidAttributesStringAreCaught
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import divide [as 別名]
def testDebugNumericSummaryInvalidAttributesStringAreCaught(self):
with session.Session(config=no_rewrite_session_config()) as sess:
a = variables.Variable(10.0, name="a")
b = variables.Variable(0.0, name="b")
c = variables.Variable(0.0, name="c")
x = math_ops.divide(a, b, name="x")
y = math_ops.multiply(x, c, name="y")
sess.run(variables.global_variables_initializer())
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"1 attribute key\(s\) were not valid for debug node "
r"__dbg_.:0_0_DebugNumericSummary: foo"):
sess.run(y, options=run_options, run_metadata=run_metadata)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0; bar=false)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"2 attribute key\(s\) were not valid for debug node "
r"__dbg_.:0_0_DebugNumericSummary:"):
sess.run(y, options=run_options, run_metadata=run_metadata)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0; mute_if_healthy=true)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"1 attribute key\(s\) were not valid for debug node "
r"__dbg_.:0_0_DebugNumericSummary: foo"):
sess.run(y, options=run_options, run_metadata=run_metadata)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:49,代碼來源:session_debug_testlib.py