當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.div方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.div方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.div方法的具體用法?Python math_ops.div怎麽用?Python math_ops.div使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.div方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _safe_scalar_div

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _safe_scalar_div(numerator, denominator, name):
  """Divides two values, returning 0 if the denominator is 0.

  Args:
    numerator: A scalar `float64` `Tensor`.
    denominator: A scalar `float64` `Tensor`.
    name: Name for the returned op.

  Returns:
    0 if `denominator` == 0, else `numerator` / `denominator`
  """
  numerator.get_shape().with_rank_at_most(1)
  denominator.get_shape().with_rank_at_most(1)
  return control_flow_ops.cond(
      math_ops.equal(
          array_ops.constant(0.0, dtype=dtypes.float64), denominator),
      lambda: array_ops.constant(0.0, dtype=dtypes.float64),
      lambda: math_ops.div(numerator, denominator),
      name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:metrics_impl.py

示例2: _MinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _MinOrMaxGrad(op, grad):
  """Gradient for Min or Max. Amazingly it's precisely the same code."""
  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  y = op.outputs[0]
  y = array_ops.reshape(y, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)

  # Compute the number of selected (maximum or minimum) elements in each
  # reduction dimension. If there are multiple minimum or maximum elements
  # then the gradient will be divided between them.
  indicators = math_ops.cast(math_ops.equal(y, op.inputs[0]), grad.dtype)
  num_selected = array_ops.reshape(
      math_ops.reduce_sum(indicators, op.inputs[1]), output_shape_kept_dims)

  return [math_ops.div(indicators, num_selected) * grad, None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:math_grad.py

示例3: _SegmentMinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _SegmentMinOrMaxGrad(op, grad, is_sorted):
  """Gradient for SegmentMin and (unsorted) SegmentMax. They share similar code."""
  zeros = array_ops.zeros(array_ops.shape(op.inputs[0]),
                          dtype=op.inputs[0].dtype)

  # Get the number of selected (minimum or maximum) elements in each segment.
  gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1])
  is_selected = math_ops.equal(op.inputs[0], gathered_outputs)
  if is_sorted:
    num_selected = math_ops.segment_sum(math_ops.cast(is_selected, grad.dtype),
                                        op.inputs[1])
  else:
    num_selected = math_ops.unsorted_segment_sum(math_ops.cast(is_selected, grad.dtype),
                                                 op.inputs[1], op.inputs[2])

  # Compute the gradient for each segment. The gradient for the ith segment is
  # divided evenly among the selected elements in that segment.
  weighted_grads = math_ops.div(grad, num_selected)
  gathered_grads = array_ops.gather(weighted_grads, op.inputs[1])

  if is_sorted:
    return array_ops.where(is_selected, gathered_grads, zeros), None
  else:
    return array_ops.where(is_selected, gathered_grads, zeros), None, None 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:math_grad.py

示例4: _safe_div

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _safe_div(numerator, denominator, name="value"):
  """Computes a safe divide which returns 0 if the denominator is zero.

  Note that the function contains an additional conditional check that is
  necessary for avoiding situations where the loss is zero causing NaNs to
  creep into the gradient computation.

  Args:
    numerator: An arbitrary `Tensor`.
    denominator: `Tensor` whose shape matches `numerator` and whose values are
      assumed to be non-negative.
    name: An optional name for the returned op.

  Returns:
    The element-wise value of the numerator divided by the denominator.
  """
  return array_ops.where(
      math_ops.greater(denominator, 0),
      math_ops.div(numerator, array_ops.where(
          math_ops.equal(denominator, 0),
          array_ops.ones_like(denominator), denominator)),
      array_ops.zeros_like(numerator),
      name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:losses_impl.py

示例5: _length_penalty

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _length_penalty(sequence_lengths, penalty_factor):
  """Calculates the length penalty. See https://arxiv.org/abs/1609.08144.

  Args:
    sequence_lengths: The sequence length of all hypotheses, a tensor
      of shape [beam_size, vocab_size].
    penalty_factor: A scalar that weights the length penalty.

  Returns:
    The length penalty factor, a tensor fo shape [beam_size].
  """
  penalty_factor = ops.convert_to_tensor(penalty_factor, name="penalty_factor")
  penalty_factor.set_shape(())  # penalty should be a scalar.
  static_penalty = tensor_util.constant_value(penalty_factor)
  if static_penalty is not None and static_penalty == 0:
    return 1.0
  return math_ops.div((5. + math_ops.to_float(sequence_lengths))
                      **penalty_factor, (5. + 1.)**penalty_factor) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:beam_search_decoder.py

示例6: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _sample_n(self, n, seed=None):
    sample_shape = array_ops.concat([[n], array_ops.shape(self.logits)], 0)
    logits = self.logits * array_ops.ones(sample_shape)
    logits_2d = array_ops.reshape(logits, [-1, self.event_size])
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    uniform = random_ops.random_uniform(
        shape=array_ops.shape(logits_2d),
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    gumbel = -math_ops.log(-math_ops.log(uniform))
    noisy_logits = math_ops.div(gumbel + logits_2d, self._temperature_2d)
    samples = nn_ops.log_softmax(noisy_logits)
    ret = array_ops.reshape(samples, sample_shape)
    return ret 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:relaxed_onehot_categorical.py

示例7: _optimal_step_size

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _optimal_step_size(last_step,
                       error_ratio,
                       safety=0.9,
                       ifactor=10.0,
                       dfactor=0.2,
                       order=5,
                       name=None):
  """Calculate the optimal size for the next Runge-Kutta step."""
  with ops.name_scope(
      name, 'optimal_step_size', [last_step, error_ratio]) as scope:
    error_ratio = math_ops.cast(error_ratio, last_step.dtype)
    exponent = math_ops.cast(1 / order, last_step.dtype)
    # this looks more complex than necessary, but importantly it keeps
    # error_ratio in the numerator so we can't divide by zero:
    factor = math_ops.maximum(
        1 / ifactor,
        math_ops.minimum(error_ratio ** exponent / safety, 1 / dfactor))
    return math_ops.div(last_step, factor, name=scope) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:odes.py

示例8: setUp

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def setUp(self):
    self.a = variables.Variable(2.0, name="a")
    self.b = variables.Variable(3.0, name="b")

    self.c = math_ops.multiply(self.a, self.b, name="c")  # Should be 6.0.
    self.d = math_ops.multiply(self.a, self.a, name="d")  # Should be 4.0.

    self.e = math_ops.multiply(self.d, self.c, name="e")  # Should be 24.0.

    self.f_y = constant_op.constant(0.30, name="f_y")
    self.f = math_ops.div(self.b, self.f_y, name="f")  # Should be 10.0.

    # The there nodes x, y and z form a graph with "cross-links" in. I.e., x
    # and y are both direct inputs to z, but x is also a direct input to y.
    self.x = variables.Variable(2.0, name="x")  # Should be 2.0
    self.y = math_ops.negative(self.x, name="y")  # Should be -2.0.

    self.z = math_ops.multiply(self.x, self.y, name="z")  # Should be -4.0.

    self.sess = session.Session()
    self.sess.run(variables.global_variables_initializer())

    self.sess = session.Session()
    self.sess.run(variables.global_variables_initializer()) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:26,代碼來源:stepper_test.py

示例9: _SegmentMinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _SegmentMinOrMaxGrad(op, grad):
  """Gradient for SegmentMin and SegmentMax. Both share the same code."""
  zeros = array_ops.zeros(
      array_ops.shape(op.inputs[0]), dtype=op.inputs[0].dtype)

  # Get the number of selected (minimum or maximum) elements in each segment.
  gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1])
  is_selected = math_ops.equal(op.inputs[0], gathered_outputs)
  num_selected = math_ops.segment_sum(
      math_ops.cast(is_selected, grad.dtype), op.inputs[1])

  # Compute the gradient for each segment. The gradient for the ith segment is
  # divided evenly among the selected elements in that segment.
  weighted_grads = math_ops.div(grad, num_selected)
  gathered_grads = array_ops.gather(weighted_grads, op.inputs[1])

  return array_ops.where(is_selected, gathered_grads, zeros), None 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:19,代碼來源:math_grad.py

示例10: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _sample_n(self, n, seed=None):
    sample_shape = array_ops.concat(([n], array_ops.shape(self.logits)), 0)
    logits = self.logits * array_ops.ones(sample_shape)
    if logits.get_shape().ndims == 2:
      logits_2d = logits
    else:
      logits_2d = array_ops.reshape(logits, [-1, self.num_classes])
    np_dtype = self.dtype.as_numpy_dtype()
    minval = np.nextafter(np_dtype(0), np_dtype(1))
    uniform = random_ops.random_uniform(shape=array_ops.shape(logits_2d),
                                        minval=minval,
                                        maxval=1,
                                        dtype=self.dtype,
                                        seed=seed)
    gumbel = - math_ops.log(- math_ops.log(uniform))
    noisy_logits = math_ops.div(gumbel + logits_2d, self.temperature)
    samples = nn_ops.log_softmax(noisy_logits)
    ret = array_ops.reshape(samples, sample_shape)
    return ret 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:21,代碼來源:relaxed_onehot_categorical.py

示例11: _safe_div

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _safe_div(numerator, denominator, name="value"):
  """Computes a safe divide which returns 0 if the denominator is zero.

  Note that the function contains an additional conditional check that is
  necessary for avoiding situations where the loss is zero causing NaNs to
  creep into the gradient computation.

  Args:
    numerator: An arbitrary `Tensor`.
    denominator: A `Tensor` whose shape matches `numerator` and whose values are
      assumed to be non-negative.
    name: An optional name for the returned op.

  Returns:
    The element-wise value of the numerator divided by the denominator.
  """
  return array_ops.where(
      math_ops.greater(denominator, 0),
      math_ops.div(numerator, array_ops.where(
          math_ops.equal(denominator, 0),
          array_ops.ones_like(denominator), denominator)),
      array_ops.zeros_like(numerator),
      name=name) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:25,代碼來源:loss_ops.py

示例12: _MinOrMaxGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _MinOrMaxGrad(op, grad):
  """Gradient for Min or Max. Amazingly it's precisely the same code."""
  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  y = op.outputs[0]
  y = array_ops.reshape(y, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)

  # Compute the number of selected (maximum or minimum) elements in each
  # reduction dimension. If there are multiple minimum or maximum elements
  # then the gradient will be divided between them.
  indicators = math_ops.cast(math_ops.equal(y, op.inputs[0]), grad.dtype)
  num_selected = array_ops.reshape(
      math_ops.reduce_sum(indicators, op.inputs[1]),
      output_shape_kept_dims)

  return [math_ops.div(indicators, num_selected) * grad, None] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:math_grad.py

示例13: _safe_div

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _safe_div(numerator, denominator, name="value"):
  """Computes a safe divide which returns 0 if the denominator is zero.

  Note that the function contains an additional conditional check that is
  necessary for avoiding situations where the loss is zero causing NaNs to
  creep into the gradient computation.

  Args:
    numerator: An arbitrary `Tensor`.
    denominator: A `Tensor` whose shape matches `numerator` and whose values are
      assumed to be non-negative.
    name: An optional name for the returned op.

  Returns:
    The element-wise value of the numerator divided by the denominator.
  """
  return math_ops.select(
      math_ops.greater(denominator, 0),
      math_ops.div(numerator, math_ops.select(
          math_ops.equal(denominator, 0),
          array_ops.ones_like(denominator), denominator)),
      array_ops.zeros_like(numerator),
      name=name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:loss_ops.py

示例14: _safe_div

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def _safe_div(numerator, denominator, name='safe_div'):
    """Computes a safe divide which returns 0 if the denominator is zero.

    Args:
      numerator: An arbitrary `Tensor`.
      denominator: `Tensor` whose shape matches `numerator`.
      name: An optional name for the returned op.

    Returns:
      The element-wise value of the numerator divided by the denominator.
    """
    return array_ops.where(
        math_ops.equal(denominator, 0),
        array_ops.zeros_like(numerator),
        math_ops.div(numerator, denominator),
        name=name) 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:18,代碼來源:metrics.py

示例15: tf_safe_div

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import div [as 別名]
def tf_safe_div(numerator, denominator):
    """ Computes a safe division which returns 0 if the denominator is zero.
    Note that the function contains an additional conditional check that is
    necessary for avoiding situations where the loss is zero causing NaNs to
    creep into the gradient computation.

    Args:
      numerator: tf.tensor
      denominator: tf.tensor

    Returns: tf.tensor

    """

    return array_ops.where(
        math_ops.greater(denominator, 0),
        math_ops.div(numerator,
                     array_ops.where(
                         math_ops.equal(denominator, 0),
                         array_ops.ones_like(denominator), denominator)),
        array_ops.zeros_like(numerator)) 
開發者ID:drethage,項目名稱:fully-convolutional-point-network,代碼行數:23,代碼來源:util.py


注:本文中的tensorflow.python.ops.math_ops.div方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。