當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.digamma方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.digamma方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.digamma方法的具體用法?Python math_ops.digamma怎麽用?Python math_ops.digamma使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.digamma方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _kl_gamma_gamma

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _kl_gamma_gamma(g0, g1, name=None):
  """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma.

  Args:
    g0: instance of a Gamma distribution object.
    g1: instance of a Gamma distribution object.
    name: (optional) Name to use for created operations.
      Default is "kl_gamma_gamma".

  Returns:
    kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
  """
  with ops.name_scope(name, "kl_gamma_gamma", values=[
      g0.concentration, g0.rate, g1.concentration, g1.rate]):
    # Result from:
    #   http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
    # For derivation see:
    #   http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions   pylint: disable=line-too-long
    return (((g0.concentration - g1.concentration)
             * math_ops.digamma(g0.concentration))
            + math_ops.lgamma(g1.concentration)
            - math_ops.lgamma(g0.concentration)
            + g1.concentration * math_ops.log(g0.rate)
            - g1.concentration * math_ops.log(g1.rate)
            + g0.concentration * (g1.rate / g0.rate - 1.)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:gamma.py

示例2: _kl_gamma_gamma

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _kl_gamma_gamma(g0, g1, name=None):
  """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma.

  Args:
    g0: instance of a Gamma distribution object.
    g1: instance of a Gamma distribution object.
    name: (optional) Name to use for created operations.
      Default is "kl_gamma_gamma".

  Returns:
    kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
  """
  with ops.name_scope(name, "kl_gamma_gamma",
                      values=[g0.alpha, g0.beta, g1.alpha, g1.beta]):
    # Result from:
    #   http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
    # For derivation see:
    #   http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions   pylint: disable=line-too-long
    return ((g0.alpha - g1.alpha) * math_ops.digamma(g0.alpha)
            + math_ops.lgamma(g1.alpha)
            - math_ops.lgamma(g0.alpha)
            + g1.alpha * math_ops.log(g0.beta)
            - g1.alpha * math_ops.log(g1.beta)
            + g0.alpha * (g1.beta / g0.beta - 1.)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:26,代碼來源:gamma.py

示例3: _kl_beta_beta

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _kl_beta_beta(d1, d2, name=None):
  """Calculate the batched KL divergence KL(d1 || d2) with d1 and d2 Beta.

  Args:
    d1: instance of a Beta distribution object.
    d2: instance of a Beta distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_beta_beta".

  Returns:
    Batchwise KL(d1 || d2)
  """
  inputs = [d1.a, d1.b, d1.a_b_sum, d2.a_b_sum]
  with ops.name_scope(name, "kl_beta_beta", inputs):
    # ln(B(a', b') / B(a, b))
    log_betas = (math_ops.lgamma(d2.a) + math_ops.lgamma(d2.b)
                - math_ops.lgamma(d2.a_b_sum) + math_ops.lgamma(d1.a_b_sum)
                - math_ops.lgamma(d1.a) - math_ops.lgamma(d1.b))
    # (a - a')*psi(a) + (b - b')*psi(b) + (a' - a + b' - b)*psi(a + b)
    digammas = ((d1.a - d2.a)*math_ops.digamma(d1.a)
              + (d1.b - d2.b)*math_ops.digamma(d1.b)
              + (d2.a_b_sum - d1.a_b_sum)*math_ops.digamma(d1.a_b_sum))
    return log_betas + digammas 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:25,代碼來源:beta.py

示例4: _entropy

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _entropy(self):
    return (self.concentration
            - math_ops.log(self.rate)
            + math_ops.lgamma(self.concentration)
            + ((1. - self.concentration) *
               math_ops.digamma(self.concentration))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:gamma.py

示例5: _entropy

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _entropy(self):
    return (
        self._log_normalization()
        - (self.concentration1 - 1.) * math_ops.digamma(self.concentration1)
        - (self.concentration0 - 1.) * math_ops.digamma(self.concentration0)
        + ((self.total_concentration - 2.) *
           math_ops.digamma(self.total_concentration))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:beta.py

示例6: _kl_beta_beta

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _kl_beta_beta(d1, d2, name=None):
  """Calculate the batchwise KL divergence KL(d1 || d2) with d1 and d2 Beta.

  Args:
    d1: instance of a Beta distribution object.
    d2: instance of a Beta distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_beta_beta".

  Returns:
    Batchwise KL(d1 || d2)
  """
  def delta(fn, is_property=True):
    fn1 = getattr(d1, fn)
    fn2 = getattr(d2, fn)
    return (fn2 - fn1) if is_property else (fn2() - fn1())
  with ops.name_scope(name, "kl_beta_beta", values=[
      d1.concentration1,
      d1.concentration0,
      d1.total_concentration,
      d2.concentration1,
      d2.concentration0,
      d2.total_concentration,
  ]):
    return (delta("_log_normalization", is_property=False)
            - math_ops.digamma(d1.concentration1) * delta("concentration1")
            - math_ops.digamma(d1.concentration0) * delta("concentration0")
            + (math_ops.digamma(d1.total_concentration)
               * delta("total_concentration"))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:31,代碼來源:beta.py

示例7: _entropy

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _entropy(self):
    v = array_ops.ones(self.batch_shape_tensor(),
                       dtype=self.dtype)[..., array_ops.newaxis]
    u = v * self.df[..., array_ops.newaxis]
    beta_arg = array_ops.concat([u, v], -1) / 2.
    return (math_ops.log(math_ops.abs(self.scale)) +
            0.5 * math_ops.log(self.df) +
            special_math_ops.lbeta(beta_arg) +
            0.5 * (self.df + 1.) *
            (math_ops.digamma(0.5 * (self.df + 1.)) -
             math_ops.digamma(0.5 * self.df))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:13,代碼來源:student_t.py

示例8: _LgammaGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _LgammaGrad(op, grad):
  """Returns grad * digamma(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    x = math_ops.conj(x)
    return grad * math_ops.digamma(x) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:math_grad.py

示例9: _DigammaGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _DigammaGrad(op, grad):
  """Compute gradient of the digamma function with respect to its argument."""
  x = op.inputs[0]
  with ops.control_dependencies([grad.op]):
    x = math_ops.conj(x)
    return grad * math_ops.polygamma(array_ops.constant(1, dtype=x.dtype), x) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:math_grad.py

示例10: _entropy

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _entropy(self):
    return (self.concentration
            + math_ops.log(self.rate)
            + math_ops.lgamma(self.concentration)
            - ((1. + self.concentration) *
               math_ops.digamma(self.concentration))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:inverse_gamma.py

示例11: _entropy

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _entropy(self):
    return (self.alpha -
            math_ops.log(self.beta) +
            math_ops.lgamma(self.alpha) +
            (1. - self.alpha) * math_ops.digamma(self.alpha)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:7,代碼來源:gamma.py

示例12: _entropy

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _entropy(self):
    return (self.alpha +
            math_ops.log(self.beta) +
            math_ops.lgamma(self.alpha) -
            (1. + self.alpha) * math_ops.digamma(self.alpha)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:7,代碼來源:inverse_gamma.py

示例13: _entropy

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _entropy(self):
    v = array_ops.ones(self.batch_shape(), dtype=self.dtype)[..., None]
    u = v * self.df[..., None]
    beta_arg = array_ops.concat([u, v], -1) / 2.
    return (math_ops.log(math_ops.abs(self.sigma)) +
            0.5 * math_ops.log(self.df) +
            special_math_ops.lbeta(beta_arg) +
            0.5 * (self.df + 1.) *
            (math_ops.digamma(0.5 * (self.df + 1.)) -
             math_ops.digamma(0.5 * self.df))) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:12,代碼來源:student_t.py

示例14: _entropy

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def _entropy(self):
    entropy = special_math_ops.lbeta(self.alpha)
    entropy += math_ops.digamma(self.alpha_sum) * (
        self.alpha_sum - math_ops.cast(self.event_shape()[0], self.dtype))
    entropy += -math_ops.reduce_sum(
        (self.alpha - 1.) * math_ops.digamma(self.alpha),
        reduction_indices=[-1],
        keep_dims=False)
    return entropy 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:11,代碼來源:dirichlet.py

示例15: setUp

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import digamma [as 別名]
def setUp(self):
    super(CoreUnaryOpsTest, self).setUp()

    self.ops = [
        ('abs', operator.abs, math_ops.abs, core.abs_function),
        ('neg', operator.neg, math_ops.negative, core.neg),
        # TODO(shoyer): add unary + to core TensorFlow
        ('pos', None, None, None),
        ('sign', None, math_ops.sign, core.sign),
        ('reciprocal', None, math_ops.reciprocal, core.reciprocal),
        ('square', None, math_ops.square, core.square),
        ('round', None, math_ops.round, core.round_function),
        ('sqrt', None, math_ops.sqrt, core.sqrt),
        ('rsqrt', None, math_ops.rsqrt, core.rsqrt),
        ('log', None, math_ops.log, core.log),
        ('exp', None, math_ops.exp, core.exp),
        ('log', None, math_ops.log, core.log),
        ('ceil', None, math_ops.ceil, core.ceil),
        ('floor', None, math_ops.floor, core.floor),
        ('cos', None, math_ops.cos, core.cos),
        ('sin', None, math_ops.sin, core.sin),
        ('tan', None, math_ops.tan, core.tan),
        ('acos', None, math_ops.acos, core.acos),
        ('asin', None, math_ops.asin, core.asin),
        ('atan', None, math_ops.atan, core.atan),
        ('lgamma', None, math_ops.lgamma, core.lgamma),
        ('digamma', None, math_ops.digamma, core.digamma),
        ('erf', None, math_ops.erf, core.erf),
        ('erfc', None, math_ops.erfc, core.erfc),
        ('lgamma', None, math_ops.lgamma, core.lgamma),
    ]
    total_size = np.prod([v.size for v in self.original_lt.axes.values()])
    self.test_lt = core.LabeledTensor(
        math_ops.cast(self.original_lt, dtypes.float32) / total_size,
        self.original_lt.axes) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:37,代碼來源:core_test.py


注:本文中的tensorflow.python.ops.math_ops.digamma方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。