本文整理匯總了Python中tensorflow.python.ops.math_ops.cumsum方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.cumsum方法的具體用法?Python math_ops.cumsum怎麽用?Python math_ops.cumsum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.cumsum方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: safe_cumprod
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def safe_cumprod(x, *args, **kwargs):
"""Computes cumprod of x in logspace using cumsum to avoid underflow.
The cumprod function and its gradient can result in numerical instabilities
when its argument has very small and/or zero values. As long as the argument
is all positive, we can instead compute the cumulative product as
exp(cumsum(log(x))). This function can be called identically to tf.cumprod.
Args:
x: Tensor to take the cumulative product of.
*args: Passed on to cumsum; these are identical to those in cumprod.
**kwargs: Passed on to cumsum; these are identical to those in cumprod.
Returns:
Cumulative product of x.
"""
with ops.name_scope(None, "SafeCumprod", [x]):
x = ops.convert_to_tensor(x, name="x")
tiny = np.finfo(x.dtype.as_numpy_dtype).tiny
return math_ops.exp(math_ops.cumsum(
math_ops.log(clip_ops.clip_by_value(x, tiny, 1)), *args, **kwargs))
示例2: safe_cumprod
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def safe_cumprod(x, *args, **kwargs):
"""Computes cumprod of x in logspace using cumsum to avoid underflow.
The cumprod function and its gradient can result in numerical instabilities
when its argument has very small and/or zero values. As long as the argument
is all positive, we can instead compute the cumulative product as
exp(cumsum(log(x))). This function can be called identically to tf.cumprod.
Args:
x: Tensor to take the cumulative product of.
*args: Passed on to cumsum; these are identical to those in cumprod.
**kwargs: Passed on to cumsum; these are identical to those in cumprod.
Returns:
Cumulative product of x.
"""
with ops.name_scope(None, "SafeCumprod", [x]):
x = ops.convert_to_tensor(x, name="x")
tiny = np.finfo(x.dtype.as_numpy_dtype).tiny
return math_ops.exp(math_ops.cumsum(
math_ops.log(clip_ops.clip_by_value(x, tiny, 1)), *args, **kwargs))
示例3: safe_cumprod
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def safe_cumprod(x, *args, **kwargs):
"""Computes cumprod of x in logspace using cumsum to avoid underflow.
The cumprod function and its gradient can result in numerical instabilities
when its argument has very small and/or zero values. As long as the argument
is all positive, we can instead compute the cumulative product as
exp(cumsum(log(x))). This function can be called identically to tf.cumprod.
Args:
x: Tensor to take the cumulative product of.
*args: Passed on to cumsum; these are identical to those in cumprod.
**kwargs: Passed on to cumsum; these are identical to those in cumprod.
Returns:
Cumulative product of x.
"""
with ops.name_scope(None, "SafeCumprod", [x]):
x = ops.convert_to_tensor(x, name="x")
tiny = np.finfo(x.dtype.as_numpy_dtype).tiny
return math_ops.exp(
math_ops.cumsum(
math_ops.log(clip_ops.clip_by_value(x, tiny, 1)), *args, **kwargs
)
)
示例4: _CumsumGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def _CumsumGrad(op, grad):
axis = op.inputs[1]
exclusive = op.get_attr("exclusive")
reverse = op.get_attr("reverse")
return [
math_ops.cumsum(
grad, axis, exclusive=exclusive, reverse=not reverse), None
]
示例5: _CumprodGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def _CumprodGrad(op, grad):
x = op.inputs[0]
axis = op.inputs[1]
exclusive = op.get_attr("exclusive")
reverse = op.get_attr("reverse")
# TODO This fails when x contains 0 and should be fixed
prod = math_ops.cumprod(x, axis, exclusive=exclusive, reverse=reverse)
out = math_ops.cumsum(
prod * grad, axis, exclusive=exclusive, reverse=not reverse)
return [out / x, None]
示例6: cumsum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def cumsum(x, axis=0):
"""Cumulative sum of the values in a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to compute the sum.
Returns:
A tensor of the cumulative sum of values of `x` along `axis`.
"""
axis = _normalize_axis(axis, ndim(x))
return math_ops.cumsum(x, axis=axis)
示例7: _strict_1d_cumsum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def _strict_1d_cumsum(tensor, len_tensor):
"""Cumsum of a 1D tensor with defined shape by padding and convolving."""
# Assumes tensor shape is fully defined.
return math_ops.cumsum(tensor)[:len_tensor]
示例8: _CumsumGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def _CumsumGrad(op, grad):
axis = op.inputs[1]
exclusive = op.get_attr("exclusive")
reverse = op.get_attr("reverse")
return [math_ops.cumsum(grad, axis, exclusive=exclusive,
reverse=not reverse), None]
示例9: _CumprodGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def _CumprodGrad(op, grad):
x = op.inputs[0]
axis = op.inputs[1]
exclusive = op.get_attr("exclusive")
reverse = op.get_attr("reverse")
# TODO This fails when x contains 0 and should be fixed
prod = math_ops.cumprod(x, axis, exclusive=exclusive, reverse=reverse)
out = math_ops.cumsum(prod * grad, axis, exclusive=exclusive,
reverse=not reverse)
return [out / x, None]
示例10: cumsum
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def cumsum(x, axis=0):
"""Cumulative sum of the values in a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to compute the sum.
Returns:
A tensor of the cumulative sum of values of `x` along `axis`.
"""
return math_ops.cumsum(x, axis=axis)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:13,代碼來源:backend.py
示例11: sparsemax
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def sparsemax(logits, name=None):
"""Computes sparsemax activations [1].
For each batch `i` and class `j` we have
sparsemax[i, j] = max(logits[i, j] - tau(logits[i, :]), 0)
[1]: https://arxiv.org/abs/1602.02068
Args:
logits: A `Tensor`. Must be one of the following types: `half`, `float32`,
`float64`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `logits`.
"""
with ops.name_scope(name, "sparsemax", [logits]) as name:
logits = ops.convert_to_tensor(logits, name="logits")
obs = array_ops.shape(logits)[0]
dims = array_ops.shape(logits)[1]
z = logits - math_ops.reduce_mean(logits, axis=1)[:, array_ops.newaxis]
# sort z
z_sorted, _ = nn.top_k(z, k=dims)
# calculate k(z)
z_cumsum = math_ops.cumsum(z_sorted, axis=1)
k = math_ops.range(
1, math_ops.cast(dims, logits.dtype) + 1, dtype=logits.dtype)
z_check = 1 + k * z_sorted > z_cumsum
# because the z_check vector is always [1,1,...1,0,0,...0] finding the
# (index + 1) of the last `1` is the same as just summing the number of 1.
k_z = math_ops.reduce_sum(math_ops.cast(z_check, dtypes.int32), axis=1)
# calculate tau(z)
indices = array_ops.stack([math_ops.range(0, obs), k_z - 1], axis=1)
tau_sum = array_ops.gather_nd(z_cumsum, indices)
tau_z = (tau_sum - 1) / math_ops.cast(k_z, logits.dtype)
# calculate p
return math_ops.maximum(
math_ops.cast(0, logits.dtype), z - tau_z[:, array_ops.newaxis])
示例12: _broadcast_ragged_sources_for_overlap
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumsum [as 別名]
def _broadcast_ragged_sources_for_overlap(source_start, source_limit,
target_splits):
"""Repeats source indices for each target item in the same batch.
Args:
source_start: `<int>[batch_size, (source_size)]`
source_limit: `<int>[batch_size, (source_size)]`
target_splits: `<int64>[batch_size, (target_size+1)]`
Returns:
`<int>[batch_size, (source_size), (target_size)]`.
A tuple of tensors `(tiled_source_start, tiled_source_limit)` where:
* `tiled_target_start[b, s, t] = source_start[b, s]`
* `tiled_target_limit[b, s, t] = source_limit[b, s]`
"""
source_splits = source_start.row_splits
target_rowlens = target_splits[1:] - target_splits[:-1]
source_batch_ids = segment_id_ops.row_splits_to_segment_ids(source_splits)
# <int64>[sum(source_size[b] for b in range(batch_size))]
# source_repeats[i] is the number of target spans in the batch that contains
# source span i. We need to add a new ragged dimension that repeats each
# source span this number of times.
source_repeats = ragged_gather_ops.gather(target_rowlens, source_batch_ids)
# <int64>[sum(source_size[b] for b in range(batch_size)) + 1]
# The row_splits tensor for the inner ragged dimension of the result tensors.
inner_splits = array_ops.concat([[0], math_ops.cumsum(source_repeats)],
axis=0)
# <int64>[sum(source_size[b] * target_size[b] for b in range(batch_size))]
# Indices for gathering source indices.
source_indices = segment_id_ops.row_splits_to_segment_ids(inner_splits)
source_start = ragged_tensor.RaggedTensor.from_nested_row_splits(
array_ops.gather(source_start.values, source_indices),
[source_splits, inner_splits])
source_limit = ragged_tensor.RaggedTensor.from_nested_row_splits(
array_ops.gather(source_limit.values, source_indices),
[source_splits, inner_splits])
return source_start, source_limit