本文整理匯總了Python中tensorflow.python.ops.math_ops.cumprod方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.cumprod方法的具體用法?Python math_ops.cumprod怎麽用?Python math_ops.cumprod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.cumprod方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: safe_cumprod
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def safe_cumprod(x, *args, **kwargs):
"""Computes cumprod of x in logspace using cumsum to avoid underflow.
The cumprod function and its gradient can result in numerical instabilities
when its argument has very small and/or zero values. As long as the argument
is all positive, we can instead compute the cumulative product as
exp(cumsum(log(x))). This function can be called identically to tf.cumprod.
Args:
x: Tensor to take the cumulative product of.
*args: Passed on to cumsum; these are identical to those in cumprod.
**kwargs: Passed on to cumsum; these are identical to those in cumprod.
Returns:
Cumulative product of x.
"""
with ops.name_scope(None, "SafeCumprod", [x]):
x = ops.convert_to_tensor(x, name="x")
tiny = np.finfo(x.dtype.as_numpy_dtype).tiny
return math_ops.exp(math_ops.cumsum(
math_ops.log(clip_ops.clip_by_value(x, tiny, 1)), *args, **kwargs))
示例2: safe_cumprod
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def safe_cumprod(x, *args, **kwargs):
"""Computes cumprod of x in logspace using cumsum to avoid underflow.
The cumprod function and its gradient can result in numerical instabilities
when its argument has very small and/or zero values. As long as the argument
is all positive, we can instead compute the cumulative product as
exp(cumsum(log(x))). This function can be called identically to tf.cumprod.
Args:
x: Tensor to take the cumulative product of.
*args: Passed on to cumsum; these are identical to those in cumprod.
**kwargs: Passed on to cumsum; these are identical to those in cumprod.
Returns:
Cumulative product of x.
"""
with ops.name_scope(None, "SafeCumprod", [x]):
x = ops.convert_to_tensor(x, name="x")
tiny = np.finfo(x.dtype.as_numpy_dtype).tiny
return math_ops.exp(math_ops.cumsum(
math_ops.log(clip_ops.clip_by_value(x, tiny, 1)), *args, **kwargs))
示例3: safe_cumprod
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def safe_cumprod(x, *args, **kwargs):
"""Computes cumprod of x in logspace using cumsum to avoid underflow.
The cumprod function and its gradient can result in numerical instabilities
when its argument has very small and/or zero values. As long as the argument
is all positive, we can instead compute the cumulative product as
exp(cumsum(log(x))). This function can be called identically to tf.cumprod.
Args:
x: Tensor to take the cumulative product of.
*args: Passed on to cumsum; these are identical to those in cumprod.
**kwargs: Passed on to cumsum; these are identical to those in cumprod.
Returns:
Cumulative product of x.
"""
with ops.name_scope(None, "SafeCumprod", [x]):
x = ops.convert_to_tensor(x, name="x")
tiny = np.finfo(x.dtype.as_numpy_dtype).tiny
return math_ops.exp(
math_ops.cumsum(
math_ops.log(clip_ops.clip_by_value(x, tiny, 1)), *args, **kwargs
)
)
示例4: _ProdGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def _ProdGrad(op, grad):
"""Gradient for Prod."""
# The gradient can be expressed by dividing the product by each entry of the
# input tensor, but this approach can't deal with zeros in the input.
# Here, we avoid this problem by composing the output as a product of two
# cumprod operations.
input_shape = array_ops.shape(op.inputs[0])
# Reshape reduction indices for the case where the parameter is a scalar
reduction_indices = array_ops.reshape(op.inputs[1], [-1])
# Expand grad to full input shape
output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
grad = array_ops.reshape(grad, output_shape_kept_dims)
grad = array_ops.tile(grad, tile_scaling)
# Pack all reduced dimensions into a single one, so we can perform the
# cumprod ops. If the reduction dims list is empty, it defaults to float32,
# so we need to cast here. We put all the shape-related ops on CPU to avoid
# copying back and forth, and since listdiff is CPU only.
with ops.device("/cpu:0"):
reduced = math_ops.cast(reduction_indices, dtypes.int32)
idx = math_ops.range(0, array_ops.rank(op.inputs[0]))
other, _ = array_ops.setdiff1d(idx, reduced)
perm = array_ops.concat([reduced, other], 0)
reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced))
other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other))
permuted = array_ops.transpose(op.inputs[0], perm)
permuted_shape = array_ops.shape(permuted)
reshaped = array_ops.reshape(permuted, (reduced_num, other_num))
# Calculate product, leaving out the current entry
left = math_ops.cumprod(reshaped, axis=0, exclusive=True)
right = math_ops.cumprod(reshaped, axis=0, exclusive=True, reverse=True)
y = array_ops.reshape(left * right, permuted_shape)
# Invert the transpose and reshape operations.
# Make sure to set the statically known shape information through a reshape.
out = grad * array_ops.transpose(y, array_ops.invert_permutation(perm))
return array_ops.reshape(out, input_shape), None
示例5: _CumprodGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def _CumprodGrad(op, grad):
x = op.inputs[0]
axis = op.inputs[1]
exclusive = op.get_attr("exclusive")
reverse = op.get_attr("reverse")
# TODO This fails when x contains 0 and should be fixed
prod = math_ops.cumprod(x, axis, exclusive=exclusive, reverse=reverse)
out = math_ops.cumsum(
prod * grad, axis, exclusive=exclusive, reverse=not reverse)
return [out / x, None]
示例6: cumprod
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def cumprod(x, axis=0):
"""Cumulative product of the values in a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to compute the product.
Returns:
A tensor of the cumulative product of values of `x` along `axis`.
"""
axis = _normalize_axis(axis, ndim(x))
return math_ops.cumprod(x, axis=axis)
示例7: _ProdGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def _ProdGrad(op, grad):
"""Gradient for Prod."""
# The gradient can be expressed by dividing the product by each entry of the
# input tensor, but this approach can't deal with zeros in the input.
# Here, we avoid this problem by composing the output as a product of two
# cumprod operations.
input_shape = array_ops.shape(op.inputs[0])
# Reshape reduction indices for the case where the parameter is a scalar
reduction_indices = array_ops.reshape(op.inputs[1], [-1])
# Expand grad to full input shape
output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
grad = array_ops.reshape(grad, output_shape_kept_dims)
grad = array_ops.tile(grad, tile_scaling)
# Pack all reduced dimensions into a single one, so we can perform the
# cumprod ops. If the reduction dims list is empty, it defaults to float32,
# so we need to cast here. We put all the shape-related ops on CPU to avoid
# copying back and forth, and since listdiff is CPU only.
with ops.device("/cpu:0"):
reduced = math_ops.cast(reduction_indices, dtypes.int32)
idx = math_ops.range(0, array_ops.rank(op.inputs[0]))
other, _ = array_ops.setdiff1d(idx, reduced)
perm = array_ops.concat(0, [reduced, other])
reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced))
other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other))
permuted = array_ops.transpose(op.inputs[0], perm)
permuted_shape = array_ops.shape(permuted)
reshaped = array_ops.reshape(permuted, (reduced_num, other_num))
# Calculate product, leaving out the current entry
left = math_ops.cumprod(reshaped, axis=0, exclusive=True)
right = math_ops.cumprod(reshaped, axis=0, exclusive=True, reverse=True)
y = array_ops.reshape(left * right, permuted_shape)
# Invert the transpose and reshape operations.
# Make sure to set the statically known shape information through a reshape.
out = grad * array_ops.transpose(y, array_ops.invert_permutation(perm))
return array_ops.reshape(out, input_shape), None
示例8: _CumprodGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def _CumprodGrad(op, grad):
x = op.inputs[0]
axis = op.inputs[1]
exclusive = op.get_attr("exclusive")
reverse = op.get_attr("reverse")
# TODO This fails when x contains 0 and should be fixed
prod = math_ops.cumprod(x, axis, exclusive=exclusive, reverse=reverse)
out = math_ops.cumsum(prod * grad, axis, exclusive=exclusive,
reverse=not reverse)
return [out / x, None]
示例9: cumprod
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def cumprod(x, axis=0):
"""Cumulative product of the values in a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to compute the product.
Returns:
A tensor of the cumulative product of values of `x` along `axis`.
"""
return math_ops.cumprod(x, axis=axis)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:13,代碼來源:backend.py
示例10: _ProdGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import cumprod [as 別名]
def _ProdGrad(op, grad):
"""Gradient for Prod."""
# The gradient can be expressed by dividing the product by each entry of the
# input tensor, but this approach can't deal with zeros in the input.
# Here, we avoid this problem by composing the output as a product of two
# cumprod operations.
input_shape = array_ops.shape(op.inputs[0])
# Reshape reduction indices for the case where the parameter is a scalar
reduction_indices = array_ops.reshape(op.inputs[1], [-1])
# Expand grad to full input shape
output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
grad = array_ops.reshape(grad, output_shape_kept_dims)
grad = array_ops.tile(grad, tile_scaling)
# Pack all reduced dimensions into a single one, so we can perform the
# cumprod ops. If the reduction dims list is empty, it defaults to float32,
# so we need to cast here. We put all the shape-related ops on CPU to avoid
# copying back and forth, and since listdiff is CPU only.
with ops.device("/cpu:0"):
rank = array_ops.rank(op.inputs[0])
reduction_indices = (reduction_indices + rank) % rank
reduced = math_ops.cast(reduction_indices, dtypes.int32)
idx = math_ops.range(0, rank)
other, _ = array_ops.setdiff1d(idx, reduced)
perm = array_ops.concat([reduced, other], 0)
reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced))
other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other))
permuted = array_ops.transpose(op.inputs[0], perm)
permuted_shape = array_ops.shape(permuted)
reshaped = array_ops.reshape(permuted, (reduced_num, other_num))
# Calculate product, leaving out the current entry
left = math_ops.cumprod(reshaped, axis=0, exclusive=True)
right = math_ops.cumprod(reshaped, axis=0, exclusive=True, reverse=True)
y = array_ops.reshape(left * right, permuted_shape)
# Invert the transpose and reshape operations.
# Make sure to set the statically known shape information through a reshape.
out = grad * array_ops.transpose(y, array_ops.invert_permutation(perm))
return array_ops.reshape(out, input_shape), None
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:45,代碼來源:math_grad.py