當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.complex方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.complex方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.complex方法的具體用法?Python math_ops.complex怎麽用?Python math_ops.complex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.complex方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _PowGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = array_ops.where(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:math_grad.py

示例2: test_log_abs_det

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def test_log_abs_det(self):
    self._skip_if_tests_to_skip_contains("log_abs_det")
    for use_placeholder in False, True:
      for shape in self._shapes_to_test:
        for dtype in self._dtypes_to_test:
          if dtype.is_complex:
            self.skipTest(
                "tf.matrix_determinant does not work with complex, so this "
                "test is being skipped.")
          with self.test_session(graph=ops.Graph()) as sess:
            sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
            operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
                shape, dtype, use_placeholder=use_placeholder)
            op_log_abs_det = operator.log_abs_determinant()
            mat_log_abs_det = math_ops.log(
                math_ops.abs(linalg_ops.matrix_determinant(mat)))
            if not use_placeholder:
              self.assertAllEqual(shape[:-2], op_log_abs_det.get_shape())
            op_log_abs_det_v, mat_log_abs_det_v = sess.run(
                [op_log_abs_det, mat_log_abs_det],
                feed_dict=feed_dict)
            self.assertAC(op_log_abs_det_v, mat_log_abs_det_v) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:linear_operator_test_util.py

示例3: _PowGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = math_ops.select(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = math_ops.select(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(
      math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:math_grad.py

示例4: __call__

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def __call__(self, inputs, state, scope=None):
        with vs.variable_scope(scope or "eunn_cell"):

            state = _eunn_loop(state, self._capacity, self.diag_vec, self.off_vec, self.diag, self._fft)

            input_matrix_init = init_ops.random_uniform_initializer(-0.01, 0.01)
            if self._comp:
                input_matrix_re = vs.get_variable("U_re", [inputs.get_shape()[-1], self._hidden_size],
                                                  initializer=input_matrix_init)
                input_matrix_im = vs.get_variable("U_im", [inputs.get_shape()[-1], self._hidden_size],
                                                  initializer=input_matrix_init)
                inputs_re = math_ops.matmul(inputs, input_matrix_re)
                inputs_im = math_ops.matmul(inputs, input_matrix_im)
                inputs = math_ops.complex(inputs_re, inputs_im)
            else:
                input_matrix = vs.get_variable("U", [inputs.get_shape()[-1], self._hidden_size],
                                               initializer=input_matrix_init)
                inputs = math_ops.matmul(inputs, input_matrix)

            bias = vs.get_variable("modReLUBias", [self._hidden_size], initializer=init_ops.constant_initializer())
            output = self._activation((inputs + state), bias, self._comp)

        return output, output 
開發者ID:IsaacChanghau,項目名稱:AmusingPythonCodes,代碼行數:25,代碼來源:EUNN.py

示例5: _FFTGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _FFTGrad(_, grad):
  size = math_ops.cast(_FFTSizeForGrad(grad, 1), dtypes.float32)
  return spectral_ops.ifft(grad) * math_ops.complex(size, 0.) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:spectral_grad.py

示例6: _IFFTGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _IFFTGrad(_, grad):
  rsize = 1. / math_ops.cast(_FFTSizeForGrad(grad, 1), dtypes.float32)
  return spectral_ops.fft(grad) * math_ops.complex(rsize, 0.) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:spectral_grad.py

示例7: _FFT2DGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _FFT2DGrad(_, grad):
  size = math_ops.cast(_FFTSizeForGrad(grad, 2), dtypes.float32)
  return spectral_ops.ifft2d(grad) * math_ops.complex(size, 0.) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:spectral_grad.py

示例8: _IFFT2DGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _IFFT2DGrad(_, grad):
  rsize = 1. / math_ops.cast(_FFTSizeForGrad(grad, 2), dtypes.float32)
  return spectral_ops.fft2d(grad) * math_ops.complex(rsize, 0.) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:spectral_grad.py

示例9: _FFT3DGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _FFT3DGrad(_, grad):
  size = math_ops.cast(_FFTSizeForGrad(grad, 3), dtypes.float32)
  return spectral_ops.ifft3d(grad) * math_ops.complex(size, 0.) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:spectral_grad.py

示例10: _RealGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _RealGrad(_, grad):
  """Returns 'grad' as the real part and set the imaginary part 0."""
  zero = constant_op.constant(0, dtype=grad.dtype)
  return math_ops.complex(grad, zero) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:6,代碼來源:math_grad.py

示例11: _ImagGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _ImagGrad(_, grad):
  """Returns 'grad' as the imaginary part and set the real part 0."""
  zero = constant_op.constant(0, dtype=grad.dtype)
  return math_ops.complex(zero, grad) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:6,代碼來源:math_grad.py

示例12: _ConjGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _ConjGrad(_, grad):
  """Returns the complex conjugate of grad."""
  return math_ops.conj(grad) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:math_grad.py

示例13: _ComplexAbsGrad

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _ComplexAbsGrad(op, grad):
  """Returns the gradient of ComplexAbs."""
  # TODO(b/27786104): The cast to complex could be removed once arithmetic
  # supports mixtures of complex64 and real values.
  return (math_ops.complex(grad, array_ops.zeros_like(grad)) *
          math_ops.sign(op.inputs[0])) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:math_grad.py

示例14: random_normal

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def random_normal(shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, seed=None):
  """Tensor with (possibly complex) Gaussian entries.

  Samples are distributed like

  ```
  N(mean, stddev^2), if dtype is real,
  X + iY,  where X, Y ~ N(mean, stddev^2) if dtype is complex.
  ```

  Args:
    shape:  `TensorShape` or Python list.  Shape of the returned tensor.
    mean:  `Tensor` giving mean of normal to sample from.
    stddev:  `Tensor` giving stdev of normal to sample from.
    dtype:  `TensorFlow` `dtype` or numpy dtype
    seed:  Python integer seed for the RNG.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)

  with ops.name_scope("random_normal"):
    samples = random_ops.random_normal(
        shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
    if dtype.is_complex:
      if seed is not None:
        seed += 1234
      more_samples = random_ops.random_normal(
          shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
      samples = math_ops.complex(samples, more_samples)
    return samples 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:linear_operator_test_util.py

示例15: random_uniform

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def random_uniform(shape,
                   minval=None,
                   maxval=None,
                   dtype=dtypes.float32,
                   seed=None):
  """Tensor with (possibly complex) Uniform entries.

  Samples are distributed like

  ```
  Uniform[minval, maxval], if dtype is real,
  X + iY,  where X, Y ~ Uniform[minval, maxval], if dtype is complex.
  ```

  Args:
    shape:  `TensorShape` or Python list.  Shape of the returned tensor.
    minval:  `0-D` `Tensor` giving the minimum values.
    maxval:  `0-D` `Tensor` giving the maximum values.
    dtype:  `TensorFlow` `dtype` or Python dtype
    seed:  Python integer seed for the RNG.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)

  with ops.name_scope("random_uniform"):
    samples = random_ops.random_uniform(
        shape, dtype=dtype.real_dtype, minval=minval, maxval=maxval, seed=seed)
    if dtype.is_complex:
      if seed is not None:
        seed += 12345
      more_samples = random_ops.random_uniform(
          shape,
          dtype=dtype.real_dtype,
          minval=minval,
          maxval=maxval,
          seed=seed)
      samples = math_ops.complex(samples, more_samples)
    return samples 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:42,代碼來源:linear_operator_test_util.py


注:本文中的tensorflow.python.ops.math_ops.complex方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。