本文整理匯總了Python中tensorflow.python.ops.math_ops.complex方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.complex方法的具體用法?Python math_ops.complex怎麽用?Python math_ops.complex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.complex方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _PowGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _PowGrad(op, grad):
"""Returns grad * (y*x^(y-1), z*log(x))."""
x = op.inputs[0]
y = op.inputs[1]
z = op.outputs[0]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
x = math_ops.conj(x)
y = math_ops.conj(y)
z = math_ops.conj(z)
gx = array_ops.reshape(
math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
# Avoid false singularity at x = 0
if x.dtype.is_complex:
# real(x) < 0 is fine for the complex case
log_x = array_ops.where(
math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
else:
# There's no sensible real value to return if x < 0, so return 0
log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
return gx, gy
示例2: test_log_abs_det
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def test_log_abs_det(self):
self._skip_if_tests_to_skip_contains("log_abs_det")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
if dtype.is_complex:
self.skipTest(
"tf.matrix_determinant does not work with complex, so this "
"test is being skipped.")
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_log_abs_det = operator.log_abs_determinant()
mat_log_abs_det = math_ops.log(
math_ops.abs(linalg_ops.matrix_determinant(mat)))
if not use_placeholder:
self.assertAllEqual(shape[:-2], op_log_abs_det.get_shape())
op_log_abs_det_v, mat_log_abs_det_v = sess.run(
[op_log_abs_det, mat_log_abs_det],
feed_dict=feed_dict)
self.assertAC(op_log_abs_det_v, mat_log_abs_det_v)
示例3: _PowGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _PowGrad(op, grad):
"""Returns grad * (y*x^(y-1), z*log(x))."""
x = op.inputs[0]
y = op.inputs[1]
z = op.outputs[0]
sx = array_ops.shape(x)
sy = array_ops.shape(y)
rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
x = math_ops.conj(x)
y = math_ops.conj(y)
z = math_ops.conj(z)
gx = array_ops.reshape(
math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
# Avoid false singularity at x = 0
if x.dtype.is_complex:
# real(x) < 0 is fine for the complex case
log_x = math_ops.select(
math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
else:
# There's no sensible real value to return if x < 0, so return 0
log_x = math_ops.select(x > 0, math_ops.log(x), array_ops.zeros_like(x))
gy = array_ops.reshape(
math_ops.reduce_sum(grad * z * log_x, ry), sy)
return gx, gy
示例4: __call__
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def __call__(self, inputs, state, scope=None):
with vs.variable_scope(scope or "eunn_cell"):
state = _eunn_loop(state, self._capacity, self.diag_vec, self.off_vec, self.diag, self._fft)
input_matrix_init = init_ops.random_uniform_initializer(-0.01, 0.01)
if self._comp:
input_matrix_re = vs.get_variable("U_re", [inputs.get_shape()[-1], self._hidden_size],
initializer=input_matrix_init)
input_matrix_im = vs.get_variable("U_im", [inputs.get_shape()[-1], self._hidden_size],
initializer=input_matrix_init)
inputs_re = math_ops.matmul(inputs, input_matrix_re)
inputs_im = math_ops.matmul(inputs, input_matrix_im)
inputs = math_ops.complex(inputs_re, inputs_im)
else:
input_matrix = vs.get_variable("U", [inputs.get_shape()[-1], self._hidden_size],
initializer=input_matrix_init)
inputs = math_ops.matmul(inputs, input_matrix)
bias = vs.get_variable("modReLUBias", [self._hidden_size], initializer=init_ops.constant_initializer())
output = self._activation((inputs + state), bias, self._comp)
return output, output
示例5: _FFTGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _FFTGrad(_, grad):
size = math_ops.cast(_FFTSizeForGrad(grad, 1), dtypes.float32)
return spectral_ops.ifft(grad) * math_ops.complex(size, 0.)
示例6: _IFFTGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _IFFTGrad(_, grad):
rsize = 1. / math_ops.cast(_FFTSizeForGrad(grad, 1), dtypes.float32)
return spectral_ops.fft(grad) * math_ops.complex(rsize, 0.)
示例7: _FFT2DGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _FFT2DGrad(_, grad):
size = math_ops.cast(_FFTSizeForGrad(grad, 2), dtypes.float32)
return spectral_ops.ifft2d(grad) * math_ops.complex(size, 0.)
示例8: _IFFT2DGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _IFFT2DGrad(_, grad):
rsize = 1. / math_ops.cast(_FFTSizeForGrad(grad, 2), dtypes.float32)
return spectral_ops.fft2d(grad) * math_ops.complex(rsize, 0.)
示例9: _FFT3DGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _FFT3DGrad(_, grad):
size = math_ops.cast(_FFTSizeForGrad(grad, 3), dtypes.float32)
return spectral_ops.ifft3d(grad) * math_ops.complex(size, 0.)
示例10: _RealGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _RealGrad(_, grad):
"""Returns 'grad' as the real part and set the imaginary part 0."""
zero = constant_op.constant(0, dtype=grad.dtype)
return math_ops.complex(grad, zero)
示例11: _ImagGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _ImagGrad(_, grad):
"""Returns 'grad' as the imaginary part and set the real part 0."""
zero = constant_op.constant(0, dtype=grad.dtype)
return math_ops.complex(zero, grad)
示例12: _ConjGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _ConjGrad(_, grad):
"""Returns the complex conjugate of grad."""
return math_ops.conj(grad)
示例13: _ComplexAbsGrad
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def _ComplexAbsGrad(op, grad):
"""Returns the gradient of ComplexAbs."""
# TODO(b/27786104): The cast to complex could be removed once arithmetic
# supports mixtures of complex64 and real values.
return (math_ops.complex(grad, array_ops.zeros_like(grad)) *
math_ops.sign(op.inputs[0]))
示例14: random_normal
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def random_normal(shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, seed=None):
"""Tensor with (possibly complex) Gaussian entries.
Samples are distributed like
```
N(mean, stddev^2), if dtype is real,
X + iY, where X, Y ~ N(mean, stddev^2) if dtype is complex.
```
Args:
shape: `TensorShape` or Python list. Shape of the returned tensor.
mean: `Tensor` giving mean of normal to sample from.
stddev: `Tensor` giving stdev of normal to sample from.
dtype: `TensorFlow` `dtype` or numpy dtype
seed: Python integer seed for the RNG.
Returns:
`Tensor` with desired shape and dtype.
"""
dtype = dtypes.as_dtype(dtype)
with ops.name_scope("random_normal"):
samples = random_ops.random_normal(
shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
if dtype.is_complex:
if seed is not None:
seed += 1234
more_samples = random_ops.random_normal(
shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
samples = math_ops.complex(samples, more_samples)
return samples
示例15: random_uniform
# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import complex [as 別名]
def random_uniform(shape,
minval=None,
maxval=None,
dtype=dtypes.float32,
seed=None):
"""Tensor with (possibly complex) Uniform entries.
Samples are distributed like
```
Uniform[minval, maxval], if dtype is real,
X + iY, where X, Y ~ Uniform[minval, maxval], if dtype is complex.
```
Args:
shape: `TensorShape` or Python list. Shape of the returned tensor.
minval: `0-D` `Tensor` giving the minimum values.
maxval: `0-D` `Tensor` giving the maximum values.
dtype: `TensorFlow` `dtype` or Python dtype
seed: Python integer seed for the RNG.
Returns:
`Tensor` with desired shape and dtype.
"""
dtype = dtypes.as_dtype(dtype)
with ops.name_scope("random_uniform"):
samples = random_ops.random_uniform(
shape, dtype=dtype.real_dtype, minval=minval, maxval=maxval, seed=seed)
if dtype.is_complex:
if seed is not None:
seed += 12345
more_samples = random_ops.random_uniform(
shape,
dtype=dtype.real_dtype,
minval=minval,
maxval=maxval,
seed=seed)
samples = math_ops.complex(samples, more_samples)
return samples