當前位置: 首頁>>代碼示例>>Python>>正文


Python math_ops.ceil方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.math_ops.ceil方法的典型用法代碼示例。如果您正苦於以下問題:Python math_ops.ceil方法的具體用法?Python math_ops.ceil怎麽用?Python math_ops.ceil使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.ceil方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _sample_n(self, n, seed=None):
    low = self._low
    high = self._high
    with ops.name_scope("transform"):
      n = ops.convert_to_tensor(n, name="n")
      x_samps = self.distribution.sample(n, seed=seed)
      ones = array_ops.ones_like(x_samps)

      # Snap values to the intervals (j - 1, j].
      result_so_far = math_ops.ceil(x_samps)

      if low is not None:
        result_so_far = array_ops.where(result_so_far < low,
                                        low * ones, result_so_far)

      if high is not None:
        result_so_far = array_ops.where(result_so_far > high,
                                        high * ones, result_so_far)

      return result_so_far 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:quantized_distribution.py

示例2: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _sample_n(self, n, seed=None):
    lower_cutoff = self._lower_cutoff
    upper_cutoff = self._upper_cutoff
    with ops.name_scope("transform"):
      n = ops.convert_to_tensor(n, name="n")
      x_samps = self.distribution.sample(n, seed=seed)
      ones = array_ops.ones_like(x_samps)

      # Snap values to the intervals (j - 1, j].
      result_so_far = math_ops.ceil(x_samps)

      if lower_cutoff is not None:
        result_so_far = array_ops.where(result_so_far < lower_cutoff,
                                        lower_cutoff * ones, result_so_far)

      if upper_cutoff is not None:
        result_so_far = array_ops.where(result_so_far > upper_cutoff,
                                        upper_cutoff * ones, result_so_far)

      return result_so_far 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:22,代碼來源:quantized_distribution.py

示例3: _sample_n

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _sample_n(self, n, seed=None):
    lower_cutoff = self._lower_cutoff
    upper_cutoff = self._upper_cutoff
    with ops.name_scope("transform"):
      n = ops.convert_to_tensor(n, name="n")
      x_samps = self.distribution.sample_n(n=n, seed=seed)
      ones = array_ops.ones_like(x_samps)

      # Snap values to the intervals (j - 1, j].
      result_so_far = math_ops.ceil(x_samps)

      if lower_cutoff is not None:
        result_so_far = math_ops.select(result_so_far < lower_cutoff,
                                        lower_cutoff * ones, result_so_far)

      if upper_cutoff is not None:
        result_so_far = math_ops.select(result_so_far > upper_cutoff,
                                        upper_cutoff * ones, result_so_far)

      return result_so_far 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:quantized_distribution.py

示例4: test_all_unary_elemwise

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def test_all_unary_elemwise():
    _test_forward_unary_elemwise(_test_abs)
    _test_forward_unary_elemwise(_test_floor)
    _test_forward_unary_elemwise(_test_exp)
    _test_forward_unary_elemwise(_test_log)
    _test_forward_unary_elemwise(_test_sin)
    _test_forward_unary_elemwise(_test_sqrt)
    _test_forward_unary_elemwise(_test_rsqrt)
    _test_forward_unary_elemwise(_test_neg)
    _test_forward_unary_elemwise(_test_square)
    # ceil and cos come with TFLite 1.14.0.post1 fbs schema
    if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'):
        _test_forward_unary_elemwise(_test_ceil)
        _test_forward_unary_elemwise(_test_cos)
        _test_forward_unary_elemwise(_test_round)
        # This fails with TF and Tflite 1.15.2, this could not have been tested
        # in CI or anywhere else. The failure mode is that we see a backtrace
        # from the converter that we need to provide a custom Tan operator
        # implementation.
        #_test_forward_unary_elemwise(_test_tan)
        _test_forward_unary_elemwise(_test_elu)

#######################################################################
# Element-wise
# ------------ 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:27,代碼來源:test_forward.py

示例5: _next_array_size

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _next_array_size(required_size, growth_factor=1.5):
  """Calculate the next size for reallocating a dynamic array.

  Args:
    required_size: number or tf.Tensor specifying required array capacity.
    growth_factor: optional number or tf.Tensor specifying the growth factor
      between subsequent allocations.

  Returns:
    tf.Tensor with dtype=int32 giving the next array size.
  """
  exponent = math_ops.ceil(
      math_ops.log(math_ops.cast(required_size, dtypes.float32))
      / math_ops.log(math_ops.cast(growth_factor, dtypes.float32)))
  return math_ops.cast(math_ops.ceil(growth_factor ** exponent), dtypes.int32) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:17,代碼來源:metric_ops.py

示例6: _log_survival_function

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _log_survival_function(self, y):
    low = self._low
    high = self._high

    # Recall the promise:
    # survival_function(y) := P[Y > y]
    #                       = 0, if y >= high,
    #                       = 1, if y < low,
    #                       = P[X > y], otherwise.

    # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in
    # between.
    j = math_ops.ceil(y)

    # P[X > j], used when low < X < high.
    result_so_far = self.distribution.log_survival_function(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if low is not None:
      result_so_far = array_ops.where(j < low,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)
    if high is not None:
      neg_inf = -np.inf * array_ops.ones_like(result_so_far)
      result_so_far = array_ops.where(j >= high, neg_inf, result_so_far)

    return result_so_far 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:quantized_distribution.py

示例7: _survival_function

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _survival_function(self, y):
    low = self._low
    high = self._high

    # Recall the promise:
    # survival_function(y) := P[Y > y]
    #                       = 0, if y >= high,
    #                       = 1, if y < low,
    #                       = P[X > y], otherwise.

    # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in
    # between.
    j = math_ops.ceil(y)

    # P[X > j], used when low < X < high.
    result_so_far = self.distribution.survival_function(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if low is not None:
      result_so_far = array_ops.where(j < low,
                                      array_ops.ones_like(result_so_far),
                                      result_so_far)
    if high is not None:
      result_so_far = array_ops.where(j >= high,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)

    return result_so_far 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:quantized_distribution.py

示例8: _log_survival_function

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _log_survival_function(self, y):
    lower_cutoff = self._lower_cutoff
    upper_cutoff = self._upper_cutoff

    # Recall the promise:
    # survival_function(y) := P[Y > y]
    #                       = 0, if y >= upper_cutoff,
    #                       = 1, if y < lower_cutoff,
    #                       = P[X > y], otherwise.

    # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in
    # between.
    j = math_ops.ceil(y)

    # P[X > j], used when lower_cutoff < X < upper_cutoff.
    result_so_far = self.distribution.log_survival_function(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if lower_cutoff is not None:
      result_so_far = array_ops.where(j < lower_cutoff,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)
    if upper_cutoff is not None:
      neg_inf = -np.inf * array_ops.ones_like(result_so_far)
      result_so_far = array_ops.where(j >= upper_cutoff, neg_inf, result_so_far)

    return result_so_far 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:33,代碼來源:quantized_distribution.py

示例9: _survival_function

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _survival_function(self, y):
    lower_cutoff = self._lower_cutoff
    upper_cutoff = self._upper_cutoff

    # Recall the promise:
    # survival_function(y) := P[Y > y]
    #                       = 0, if y >= upper_cutoff,
    #                       = 1, if y < lower_cutoff,
    #                       = P[X > y], otherwise.

    # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in
    # between.
    j = math_ops.ceil(y)

    # P[X > j], used when lower_cutoff < X < upper_cutoff.
    result_so_far = self.distribution.survival_function(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if lower_cutoff is not None:
      result_so_far = array_ops.where(j < lower_cutoff,
                                      array_ops.ones_like(result_so_far),
                                      result_so_far)
    if upper_cutoff is not None:
      result_so_far = array_ops.where(j >= upper_cutoff,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)

    return result_so_far 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:34,代碼來源:quantized_distribution.py

示例10: setUp

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def setUp(self):
    super(CoreUnaryOpsTest, self).setUp()

    self.ops = [
        ('abs', operator.abs, math_ops.abs, core.abs_function),
        ('neg', operator.neg, math_ops.negative, core.neg),
        # TODO(shoyer): add unary + to core TensorFlow
        ('pos', None, None, None),
        ('sign', None, math_ops.sign, core.sign),
        ('reciprocal', None, math_ops.reciprocal, core.reciprocal),
        ('square', None, math_ops.square, core.square),
        ('round', None, math_ops.round, core.round_function),
        ('sqrt', None, math_ops.sqrt, core.sqrt),
        ('rsqrt', None, math_ops.rsqrt, core.rsqrt),
        ('log', None, math_ops.log, core.log),
        ('exp', None, math_ops.exp, core.exp),
        ('log', None, math_ops.log, core.log),
        ('ceil', None, math_ops.ceil, core.ceil),
        ('floor', None, math_ops.floor, core.floor),
        ('cos', None, math_ops.cos, core.cos),
        ('sin', None, math_ops.sin, core.sin),
        ('tan', None, math_ops.tan, core.tan),
        ('acos', None, math_ops.acos, core.acos),
        ('asin', None, math_ops.asin, core.asin),
        ('atan', None, math_ops.atan, core.atan),
        ('lgamma', None, math_ops.lgamma, core.lgamma),
        ('digamma', None, math_ops.digamma, core.digamma),
        ('erf', None, math_ops.erf, core.erf),
        ('erfc', None, math_ops.erfc, core.erfc),
        ('lgamma', None, math_ops.lgamma, core.lgamma),
    ]
    total_size = np.prod([v.size for v in self.original_lt.axes.values()])
    self.test_lt = core.LabeledTensor(
        math_ops.cast(self.original_lt, dtypes.float32) / total_size,
        self.original_lt.axes) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:37,代碼來源:core_test.py

示例11: _next_array_size

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _next_array_size(required_size, growth_factor=1.5):
  """Calculate the next size for reallocating a dynamic array.

  Args:
    required_size: number or tf.Tensor specifying required array capacity.
    growth_factor: optional number or tf.Tensor specifying the growth factor
      between subsequent allocations.

  Returns:
    tf.Tensor with dtype=int32 giving the next array size.
  """
  exponent = math_ops.ceil(
      math_ops.log(math_ops.cast(required_size, dtypes.float32)) /
      math_ops.log(math_ops.cast(growth_factor, dtypes.float32)))
  return math_ops.cast(math_ops.ceil(growth_factor**exponent), dtypes.int32) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:17,代碼來源:metric_ops.py

示例12: _log_survival_function

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _log_survival_function(self, y):
    lower_cutoff = self._lower_cutoff
    upper_cutoff = self._upper_cutoff

    # Recall the promise:
    # survival_function(y) := P[Y > y]
    #                       = 0, if y >= upper_cutoff,
    #                       = 1, if y < lower_cutoff,
    #                       = P[X > y], otherwise.

    # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in
    # between.
    j = math_ops.ceil(y)

    # P[X > j], used when lower_cutoff < X < upper_cutoff.
    result_so_far = self.distribution.log_survival_function(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if lower_cutoff is not None:
      result_so_far = math_ops.select(j < lower_cutoff,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)
    if upper_cutoff is not None:
      neg_inf = -np.inf * array_ops.ones_like(result_so_far)
      result_so_far = math_ops.select(j >= upper_cutoff, neg_inf, result_so_far)

    return result_so_far 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:33,代碼來源:quantized_distribution.py

示例13: _survival_function

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _survival_function(self, y):
    lower_cutoff = self._lower_cutoff
    upper_cutoff = self._upper_cutoff

    # Recall the promise:
    # survival_function(y) := P[Y > y]
    #                       = 0, if y >= upper_cutoff,
    #                       = 1, if y < lower_cutoff,
    #                       = P[X > y], otherwise.

    # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in
    # between.
    j = math_ops.ceil(y)

    # P[X > j], used when lower_cutoff < X < upper_cutoff.
    result_so_far = self.distribution.survival_function(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += array_ops.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if lower_cutoff is not None:
      result_so_far = math_ops.select(j < lower_cutoff,
                                      array_ops.ones_like(result_so_far),
                                      result_so_far)
    if upper_cutoff is not None:
      result_so_far = math_ops.select(j >= upper_cutoff,
                                      array_ops.zeros_like(result_so_far),
                                      result_so_far)

    return result_so_far 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:34,代碼來源:quantized_distribution.py

示例14: _test_ceil

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def _test_ceil(data):
    """ One iteration of ceil """
    return _test_unary_elemwise(math_ops.ceil, data)
#######################################################################
# Floor
# ----- 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:8,代碼來源:test_forward.py

示例15: frames

# 需要導入模塊: from tensorflow.python.ops import math_ops [as 別名]
# 或者: from tensorflow.python.ops.math_ops import ceil [as 別名]
def frames(signal, frame_length, frame_step, name=None):
  """Frame a signal into overlapping frames.

  May be used in front of spectral functions.

  For example:

  ```python
  pcm = tf.placeholder(tf.float32, [None, 9152])
  frames = tf.contrib.signal.frames(pcm, 512, 180)
  magspec = tf.abs(tf.spectral.rfft(frames, [512]))
  image = tf.expand_dims(magspec, 3)
  ```

  Args:
    signal: A `Tensor` of shape `[batch_size, signal_length]`.
    frame_length: An `int32` or `int64` `Tensor`. The length of each frame.
    frame_step: An `int32` or `int64` `Tensor`. The step between frames.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of frames with shape `[batch_size, num_frames, frame_length]`.

  Raises:
    ValueError: if signal does not have rank 2.
  """
  with ops.name_scope(name, "frames", [signal, frame_length, frame_step]):
    signal = ops.convert_to_tensor(signal, name="signal")
    frame_length = ops.convert_to_tensor(frame_length, name="frame_length")
    frame_step = ops.convert_to_tensor(frame_step, name="frame_step")

    signal_rank = signal.shape.ndims

    if signal_rank != 2:
      raise ValueError("expected signal to have rank 2 but was " + signal_rank)

    signal_length = array_ops.shape(signal)[1]

    num_frames = math_ops.ceil((signal_length - frame_length) / frame_step)
    num_frames = 1 + math_ops.cast(num_frames, dtypes.int32)

    pad_length = (num_frames - 1) * frame_step + frame_length
    pad_signal = array_ops.pad(signal, [[0, 0], [0,
                                                 pad_length - signal_length]])

    indices_frame = array_ops.expand_dims(math_ops.range(frame_length), 0)
    indices_frames = array_ops.tile(indices_frame, [num_frames, 1])

    indices_step = array_ops.expand_dims(
        math_ops.range(num_frames) * frame_step, 1)
    indices_steps = array_ops.tile(indices_step, [1, frame_length])

    indices = indices_frames + indices_steps

    # TODO(androbin): remove `transpose` when `gather` gets `axis` support
    pad_signal = array_ops.transpose(pad_signal)
    signal_frames = array_ops.gather(pad_signal, indices)
    signal_frames = array_ops.transpose(signal_frames, perm=[2, 0, 1])

    return signal_frames 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:62,代碼來源:shape_ops.py


注:本文中的tensorflow.python.ops.math_ops.ceil方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。